Arithmetic Annuity Calculator

  Excel Download for Premium Users Only  Quizzes Available for Premium Users Only  Unlimited Practice Problem Generator for Premium Users Only  Flashcards for Premium Users Only  
First Payment Progression Payment N Interest Rate Increasing Decreasing
  or  

Given an interest rate of 8% and a first payment amount of 1000 arithmetically increasing by 100 for 4 periods, calculate the Present Value (PV) and Accumulated Value (AV) of an Increasing Arithmetic Annuity Immediate:

Ian|i  =  Arithmetic Payment x (än|i - nvn)
  i

Calculate d
d  =  i
  1 + i

d  =  0.08
  1 + 0.08

d  =  0.08
  1.08

d = 0.0740740740741

Calculate Present Value of Annuity Factor (PVA) given i = 0.08, n = 4, and v = 0.925925925926
ä4|0.08  =  (1 - 0.9259259259264)
  0.0740740740741

ä4|0.08  =  (1 - 0.735029852796)
  0.0740740740741

ä4|0.08  =  0.264970147204
  0.0740740740741

ä4|0.08 = 3.5771

Now Calculate the Present Value of an Increasing Arithmetic Annuity:
Ia4|0.08  =  Arithmetic Payment x (ä4|0.08 - nvn)
  i

Ia4|0.08  =  100 x (3.5771 - 4(0.925925925926)4)
  0.08

Ia4|0.08  =  100 x (3.5771 - 4(0.735029852796))
  0.08

Ia4|0.08  =  100 x (3.5771 - 2.94011941119)
  0.08

Ia4|0.08  =  100 x 0.636980588814
  0.08

Ia4|0.08  =  63.6980588814
  0.08

Ia4|0.08 = 796.225736018

Calculate the Accumulated Value of an Increasing Arithmetic Annuity:
Isn|i  =  Arithmetic Payment x (sn|i - n)
  i

sn|i  =  (1 + i)n - 1
  d

sn|i  =  (1 + 0.08)4 - 1
  0.0740740740741

sn|i  =  1.084 - 1
  0.0740740740741

sn|i  =  1.36048896 - 1
  0.0740740740741

sn|i  =  0.36048896
  0.0740740740741

s4|0.08 = 4.86660096

Calculate AV given i = 0.08, n = 4
Isn|i  =  1000 x (sn|i - n)
  0.08

Isn|i  =  1000 x (4.86660096 - 4)
  0.08

Isn|i  =  1000 x (0.86660096)
  0.08

Isn|i  =  866.60096
  0.08

Isn|i = 10832.512