Arithmetic Annuity Calculator

  Excel Download for Premium Users Only  Quizzes Available for Premium Users Only  Unlimited Practice Problem Generator for Premium Users Only  Flashcards for Premium Users Only  
First Payment Progression Payment N Interest Rate Increasing Decreasing
  or  

Given an interest rate of 8% and a first payment amount of 1000 arithmetically increasing by 100 for 4 periods, calculate the Present Value (PV) and Accumulated Value (AV) of an Increasing Arithmetic Annuity Immediate:

Ian|i  =  Arithmetic Payment x (än|i - nvn)
  i

Calculate d
d  =  i
  1 + i

d  =  0.08
  1 + 0.08

d  =  0.08
  1.08

d = 0.074074074074074

Calculate Present Value of Annuity Factor (PVA) given i = 0.08, n = 4, and v = 0.92592592592593
ä4|0.08  =  (1 - 0.925925925925934)
  0.074074074074074

ä4|0.08  =  (1 - 0.73502985279645)
  0.074074074074074

ä4|0.08  =  0.26497014720355
  0.074074074074074

ä4|0.08 = 3.5771

Now Calculate the Present Value of an Increasing Arithmetic Annuity:
Ia4|0.08  =  Arithmetic Payment x (ä4|0.08 - nvn)
  i

Ia4|0.08  =  100 x (3.5771 - 4(0.92592592592593)4)
  0.08

Ia4|0.08  =  100 x (3.5771 - 4(0.73502985279645))
  0.08

Ia4|0.08  =  100 x (3.5771 - 2.9401194111858)
  0.08

Ia4|0.08  =  100 x 0.63698058881419
  0.08

Ia4|0.08  =  63.698058881419
  0.08

Ia4|0.08 = 796.22573601773

Calculate the Accumulated Value of an Increasing Arithmetic Annuity:
Isn|i  =  Arithmetic Payment x (sn|i - n)
  i

sn|i  =  (1 + i)n - 1
  d

sn|i  =  (1 + 0.08)4 - 1
  0.074074074074074

sn|i  =  1.084 - 1
  0.074074074074074

sn|i  =  1.36048896 - 1
  0.074074074074074

sn|i  =  0.36048896
  0.074074074074074

s4|0.08 = 4.86660096

Calculate AV given i = 0.08, n = 4
Isn|i  =  1000 x (sn|i - n)
  0.08

Isn|i  =  1000 x (4.86660096 - 4)
  0.08

Isn|i  =  1000 x (0.86660096)
  0.08

Isn|i  =  866.60096
  0.08

Isn|i = 10832.512