Enter Number


  

Show the Lagrange Four Square Theorem for

37

Lagrange Four Square Definition

For any natural number (p), we write as

p = a2 + b2 + c2 + d2

Determine max_a:

Floor(√37) = Floor(6.0827625302982)

Floor(6.0827625302982) = 6
This is called max_a

Determine min_a:

Find the first value of a such that
a2 ≥ n/4

Start with min_a = 0 and increase by 1

Continue until we reach or breach n/4 → 37/4 = 9.25

When min_a = 4, then it is a2 = 16 ≥ 9.25, so min_a = 4

Find a in the range of (min_a, max_a)

(0, 6)

a = 0

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 02)

max_b = Floor(√37 - 0)

max_b = Floor(√37)

max_b = Floor(6.0827625302982)

max_b = 6

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 02)/3 = 12.333333333333

When min_b = 4, then it is b2 = 16 ≥ 12.333333333333, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 6)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 02 - 42)

max_c = Floor(√37 - 0 - 16)

max_c = Floor(√21)

max_c = Floor(4.5825756949558)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 02 - 42)/2 = 10.5

When min_c = 4, then it is c2 = 16 ≥ 10.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 02 - 42 - 42

max_d = √37 - 0 - 16 - 16

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 02 - 52)

max_c = Floor(√37 - 0 - 25)

max_c = Floor(√12)

max_c = Floor(3.4641016151378)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 02 - 52)/2 = 6

When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 02 - 52 - 32

max_d = √37 - 0 - 25 - 9

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 02 - 62)

max_c = Floor(√37 - 0 - 36)

max_c = Floor(√1)

max_c = Floor(1)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 02 - 62)/2 = 0.5

When min_c = 0, then it is c2 = 1 ≥ 0.5, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 02 - 62 - 02

max_d = √37 - 0 - 36 - 0

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (0, 6, 0, 1) is an integer solution proven below

02 + 62 + 02 + 12 → 0 + 36 + 0 + 1 = 37

c = 1

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 02 - 62 - 12

max_d = √37 - 0 - 36 - 1

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (0, 6, 1, 0) is an integer solution proven below

02 + 62 + 12 + 02 → 0 + 36 + 1 + 0 = 37

a = 1

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 12)

max_b = Floor(√37 - 1)

max_b = Floor(√36)

max_b = Floor(6)

max_b = 6

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 12)/3 = 12

When min_b = 4, then it is b2 = 16 ≥ 12, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 6)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 12 - 42)

max_c = Floor(√37 - 1 - 16)

max_c = Floor(√20)

max_c = Floor(4.4721359549996)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 12 - 42)/2 = 10

When min_c = 4, then it is c2 = 16 ≥ 10, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 12 - 42 - 42

max_d = √37 - 1 - 16 - 16

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (1, 4, 4, 2) is an integer solution proven below

12 + 42 + 42 + 22 → 1 + 16 + 16 + 4 = 37

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 12 - 52)

max_c = Floor(√37 - 1 - 25)

max_c = Floor(√11)

max_c = Floor(3.3166247903554)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 12 - 52)/2 = 5.5

When min_c = 3, then it is c2 = 9 ≥ 5.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 12 - 52 - 32

max_d = √37 - 1 - 25 - 9

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 12 - 62)

max_c = Floor(√37 - 1 - 36)

max_c = Floor(√0)

max_c = Floor(0)

max_c = 0

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 12 - 62)/2 = 0

When min_c = 0, then it is c2 = 1 ≥ 0, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 12 - 62 - 02

max_d = √37 - 1 - 36 - 0

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (1, 6, 0, 0) is an integer solution proven below

12 + 62 + 02 + 02 → 1 + 36 + 0 + 0 = 37

a = 2

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 22)

max_b = Floor(√37 - 4)

max_b = Floor(√33)

max_b = Floor(5.744562646538)

max_b = 5

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 22)/3 = 11

When min_b = 4, then it is b2 = 16 ≥ 11, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 5)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 22 - 42)

max_c = Floor(√37 - 4 - 16)

max_c = Floor(√17)

max_c = Floor(4.1231056256177)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 22 - 42)/2 = 8.5

When min_c = 3, then it is c2 = 9 ≥ 8.5, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 22 - 42 - 32

max_d = √37 - 4 - 16 - 9

max_d = √8

max_d = 2.8284271247462

Since max_d = 2.8284271247462 is not an integer, this is not a solution

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 22 - 42 - 42

max_d = √37 - 4 - 16 - 16

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (2, 4, 4, 1) is an integer solution proven below

22 + 42 + 42 + 12 → 4 + 16 + 16 + 1 = 37

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 22 - 52)

max_c = Floor(√37 - 4 - 25)

max_c = Floor(√8)

max_c = Floor(2.8284271247462)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 22 - 52)/2 = 4

When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 22 - 52 - 22

max_d = √37 - 4 - 25 - 4

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (2, 5, 2, 2) is an integer solution proven below

22 + 52 + 22 + 22 → 4 + 25 + 4 + 4 = 37

a = 3

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 32)

max_b = Floor(√37 - 9)

max_b = Floor(√28)

max_b = Floor(5.2915026221292)

max_b = 5

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 32)/3 = 9.3333333333333

When min_b = 4, then it is b2 = 16 ≥ 9.3333333333333, so min_b = 4

Test values for b in the range of (min_b, max_b)

(4, 5)

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 32 - 42)

max_c = Floor(√37 - 9 - 16)

max_c = Floor(√12)

max_c = Floor(3.4641016151378)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 32 - 42)/2 = 6

When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 32 - 42 - 32

max_d = √37 - 9 - 16 - 9

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 5

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 32 - 52)

max_c = Floor(√37 - 9 - 25)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 32 - 52)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 4

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 42)

max_b = Floor(√37 - 16)

max_b = Floor(√21)

max_b = Floor(4.5825756949558)

max_b = 4

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 42)/3 = 7

When min_b = 3, then it is b2 = 9 ≥ 7, so min_b = 3

Test values for b in the range of (min_b, max_b)

(3, 4)

b = 3

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 42 - 32)

max_c = Floor(√37 - 16 - 9)

max_c = Floor(√12)

max_c = Floor(3.4641016151378)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 42 - 32)/2 = 6

When min_c = 3, then it is c2 = 9 ≥ 6, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 42 - 32 - 32

max_d = √37 - 16 - 9 - 9

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 4

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 42 - 42)

max_c = Floor(√37 - 16 - 16)

max_c = Floor(√5)

max_c = Floor(2.2360679774998)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 42 - 42)/2 = 2.5

When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 42 - 42 - 22

max_d = √37 - 16 - 16 - 4

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (4, 4, 2, 1) is an integer solution proven below

42 + 42 + 22 + 12 → 16 + 16 + 4 + 1 = 37

a = 5

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 52)

max_b = Floor(√37 - 25)

max_b = Floor(√12)

max_b = Floor(3.4641016151378)

max_b = 3

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 52)/3 = 4

When min_b = 2, then it is b2 = 4 ≥ 4, so min_b = 2

Test values for b in the range of (min_b, max_b)

(2, 3)

b = 2

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 52 - 22)

max_c = Floor(√37 - 25 - 4)

max_c = Floor(√8)

max_c = Floor(2.8284271247462)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 52 - 22)/2 = 4

When min_c = 2, then it is c2 = 4 ≥ 4, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 52 - 22 - 22

max_d = √37 - 25 - 4 - 4

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (5, 2, 2, 2) is an integer solution proven below

52 + 22 + 22 + 22 → 25 + 4 + 4 + 4 = 37

b = 3

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 52 - 32)

max_c = Floor(√37 - 25 - 9)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 52 - 32)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 6

Find max_b which is Floor(√n - a2)

max_b = Floor(√37 - 62)

max_b = Floor(√37 - 36)

max_b = Floor(√1)

max_b = Floor(1)

max_b = 1

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (37 - 62)/3 = 0.33333333333333

When min_b = 0, then it is b2 = 1 ≥ 0.33333333333333, so min_b = 0

Test values for b in the range of (min_b, max_b)

(0, 1)

b = 0

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 62 - 02)

max_c = Floor(√37 - 36 - 0)

max_c = Floor(√1)

max_c = Floor(1)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 62 - 02)/2 = 0.5

When min_c = 0, then it is c2 = 1 ≥ 0.5, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 62 - 02 - 02

max_d = √37 - 36 - 0 - 0

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (6, 0, 0, 1) is an integer solution proven below

62 + 02 + 02 + 12 → 36 + 0 + 0 + 1 = 37

c = 1

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 62 - 02 - 12

max_d = √37 - 36 - 0 - 1

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (6, 0, 1, 0) is an integer solution proven below

62 + 02 + 12 + 02 → 36 + 0 + 1 + 0 = 37

b = 1

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√37 - 62 - 12)

max_c = Floor(√37 - 36 - 1)

max_c = Floor(√0)

max_c = Floor(0)

max_c = 0

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (37 - 62 - 12)/2 = 0

When min_c = 0, then it is c2 = 1 ≥ 0, so min_c = 0

c = 0

See if d is an integer solution which is √n - a2 - b2

max_d = √37 - 62 - 12 - 02

max_d = √37 - 36 - 1 - 0

max_d = √0

max_d = 0

Since max_d = 0, then (a, b, c, d) = (6, 1, 0, 0) is an integer solution proven below

62 + 12 + 02 + 02 → 36 + 1 + 0 + 0 = 37

List out 3 solutions:

(a, b, c, d) = (6, 1, 0, 0)
(a, b, c, d) = (4, 4, 2, 1)
(a, b, c, d) = (5, 2, 2, 2)


You have 2 free calculationss remaining




What is the Answer?
(a, b, c, d) = (6, 1, 0, 0)
(a, b, c, d) = (4, 4, 2, 1)
(a, b, c, d) = (5, 2, 2, 2)
How does the Lagrange Four Square Theorem (Bachet Conjecture) Calculator work?
Free Lagrange Four Square Theorem (Bachet Conjecture) Calculator - Builds the Lagrange Theorem Notation (Bachet Conjecture) for any natural number using the Sum of four squares.
This calculator has 1 input.

What 1 formula is used for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?

p = a2 + b2 + c2 + d2

For more math formulas, check out our Formula Dossier

What 7 concepts are covered in the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?

algorithm
A process to solve a problem in a set amount of time
floor
the greatest integer that is less than or equal to x
integer
a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...
lagrange theorem
in group theory, for any finite group say G, the order of subgroup H of group G divides the order of G
p = a2 + b2 + c2 + d2
maximum
the greatest or highest amount possible or attained
minimum
the least or lowest amount possible or attained
natural number
the positive integers (whole numbers)
1, 2, 3, ...
Example calculations for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator

Lagrange Four Square Theorem (Bachet Conjecture) Calculator Video


Tags:



Add This Calculator To Your Website