f(x)=3^x

<-- Enter Terms

With the function that you entered of f(x)=3x, plot points, determine the intercepts, domain, range

Determine function type:
Since we have a number raised to a variable, this is an exponential function

Now Plot points from 10 to -10
xPlug in xf(x) = 3xOrdered Pair
-103-101.693508780843E-5(-10, 1.693508780843E-5)
-93-95.0805263425291E-5(-9, 5.0805263425291E-5)
-83-80.00015241579027587(-8, 0.00015241579027587)
-73-70.00045724737082762(-7, 0.00045724737082762)
-63-60.0013717421124829(-6, 0.0013717421124829)
-53-50.0041152263374486(-5, 0.0041152263374486)
-43-40.012345679012346(-4, 0.012345679012346)
-33-30.037037037037037(-3, 0.037037037037037)
-23-20.11111111111111(-2, 0.11111111111111)
-13-10.33333333333333(-1, 0.33333333333333)
0301(0, 1)
1313(1, 3)
2329(2, 9)
33327(3, 27)
43481(4, 81)
535243(5, 243)
636729(6, 729)
7372187(7, 2187)
8386561(8, 6561)
93919683(9, 19683)
1031059049(10, 59049)

Determine the y-intercept:
The y-intercept is found when x is set to 0. From the grid above, our y-intercept is 1

Determine the x-intercept
The x-intercept is found when y is set to 0
The y-intercept is found when y is set to 0. From the grid above, our x-intercept is 0

Determine the domain of the function:
The domain represents all values of x that you can enter
The domain is (-∞, ∞) or All Real Number

Determine the range of the function:
The range is all the possible values of y or f(x) that can exist
The range is (0, ∞) or All Positive Real Numbers