# Critical Z-value 0.03

<-- Enter α

For t-distribution critical values, use our t-value distribution calculator
For F-distribution critical values, use our F-value distribution calculator
For Χ2-distribution critical values, use our chi-square distribution calculator

Given α = 0.03, calculate the right-tailed and left-tailed critical value for Z

Calculate right-tailed value:
Since α = 0.03, the area under the curve is 1 - α → 1 - 0.03 = 0.97

Our critical z value is 1.8808
In Microsoft Excel or Google Sheets, you write this function as =NORMSINV(0.97)

Calculate left-tailed value:
Our critical z-value = -1.8808
In Microsoft Excel or Google Sheets, you write this function as =NORMSINV(0.03)

zProbability (Area under Curve)
0.01-2.3263
0.02-2.0537
0.03-1.8808
0.04-1.7507
0.05-1.6449
0.06-1.5548
0.07-1.4758
0.08-1.4051
0.09-1.3408
0.10-1.2816
0.11-1.2265
0.12-1.175
0.13-1.1264
0.14-1.0803
0.15-1.0364
0.16-0.9945
0.17-0.9542
0.18-0.9154
0.19-0.8779
0.20-0.8416
0.21-0.8064
0.22-0.7722
0.23-0.7388
0.24-0.7063
0.25-0.6745
0.26-0.6433
0.27-0.6128
0.28-0.5828
0.29-0.5534
0.30-0.5244
0.31-0.4959
0.32-0.4677
0.33-0.4399
0.34-0.4125
0.35-0.3853
0.36-0.3585
0.37-0.3319
0.38-0.3055
0.39-0.2793
0.40-0.2533
0.41-0.2275
0.42-0.2019
0.43-0.1764
0.44-0.151
0.45-0.1257
0.46-0.1004
0.47-0.0753
0.48-0.0502
0.49-0.0251
0.500
0.510.0251
0.520.0502
0.530.0753
0.540.1004
0.550.1257
0.560.151
0.570.1764
0.580.2019
0.590.2275
0.600.2533
0.610.2793
0.620.3055
0.630.3319
0.640.3585
0.650.3853
0.660.4125
0.670.4399
0.680.4677
0.690.4959
0.700.5244
0.710.5534
0.720.5828
0.730.6128
0.740.6433
0.750.6745
0.760.7063
0.770.7388
0.780.7722
0.790.8064
0.800.8416
0.810.8779
0.820.9154
0.830.9542
0.840.9945
0.851.0364
0.861.0803
0.871.1264
0.881.175
0.891.2265
0.901.2816
0.911.3408
0.921.4051
0.931.4758
0.941.5548
0.951.6449
0.961.7507
0.971.8808
0.9751.96
0.025-1.96
0.982.0537
0.992.3263
0.005-2.5758
0.9952.5758