Enter Number of Occurrences (n) Enter probability of success (p) Enter Number of successes (k) Moment Number (t) (Optional)
         

Answer
Success!
Kurtosis = 0.03125

↓Steps Explained:↓

A binomial distribution has a probability of success = 0.8

Calculate the probability of exactly 3 successes in 8 trials:

The binomial probability formula is as follows:

f(k;n,p)  =  n! * pkqn - k
  k!(n - k)!

Calculate q - the probability of failure:

q = 1 - p

q = 1 - 0.8

q = 0.2

Calculate n!:

n! = 8!

8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

8! = 40320

Calculate k!:

k! = 3!

3! = 3 * 2 * 1

3! = 6

Calculate (n - k)!:

(n - k)! = (8 - 3)!

(n - k)! = 5!

5! = 5 * 4 * 3 * 2 * 1

5! = 120

Calculate the binomial distribution probability:

P(X = 3)  =  8! * 0.830.2(8 - 3)
  3!(8 - 3)!

P(X = 3)  =  40320 * 0.512 * 0.25
  6 * 120

P(X = 3)  =  40320 * 0.512 * 0.00032
  720

P(X = 3)  =  6.6060288
  720

Calculate nq to see if we can use the Normal Approximation:

Since q = 1 - p, we have n(1 - p) = 8(1 - 0.8)

nq = 8(0.2)

nq = 1.6

Calculate the mean μ (expected value)

μ  =  np

μ  =  8 x 0.8

μ = 6.4

Calculate the variance σ2

σ2  =  np(1 - p)

σ2  =  8 x 0.8 x (1 - 0.8)

σ2  =  6.4 x 0.2

σ2 = 1.28

Calculate the standard deviation σ

σ  =  √σ2 = √np(1 - p)

σ  =  √1.28

σ = 1.1314

Calculate Skewness:

Skewness  =  1 - 2p
  np(1 - p)

Skewness  =  1 - 2(0.8)
  8(0.8)(1 - 0.8)

Skewness  =  1 - 1.6)
  8(0.8)(0.2)

Skewness  =  -0.6
  1.28

Skewness = -0.46875

Calculate Kurtosis:

Kurtosis  =  1 - 6p(1 - p)
  np(1 - p)

Kurtosis  =  1 - 6(0.8)(1 - 0.8)
  8(0.8)(1 - 0.8)

Kurtosis  =  1 - (4.8)(0.2)
  8(0.8)(0.2)

Kurtosis  =  1 - 0.96
  1.28

Kurtosis = 0.03125

Final Answer

Kurtosis = 0.03125
Take the Quiz  Switch to Chat Mode


Related Calculators:  Poisson Distribution  |  Geometric Distribution  |  Hypergeometric Distribution