Evaluate this complex number square root:
√2 + 3i
√a + bi:
root1 = x + yi
root2 = -x - yi
r = √a2 + b2
r = √22 + 32
r = √4 + 9
r = √13
r = 3.605551275464
y = √½(r-a)
y = √½(3.605551275464 - 2)
y = √½(1.605551275464)
y = √0.80277563773199
y = 0.89597747612984
x = | b |
2y |
x = | 3 |
2(0.89597747612984) |
x = | 3 |
1.7919549522597 |
x = 1.6741492280355
Evaluate this complex number absolute value
|2 + 3i|
On the number line
Distance from 0 to that number.
|a + bi| = √a2 + b2
|2 + 3i| = √a2 + b2
|2 + 3i| = √22 + 32
|2 + 3i| = √4 + 9
|2 + 3i| = √13
Determine the complex conjugate for
2 + 3i
The conjugate of a + bi = a - bi