Enter a and bi piece:

a =  bi =

Enter c and di piece:

c =  di =
              

Answer
Success!
42 + 11i

↓Steps Explained:↓

Evaluate this complex number multiplication

(2 + 3i)(9 - 8i)

Define the FOIL Formula:

(a * c) + (b * c) + (a * d) + (b * d)

Set the FOIL values:

a = 2, b = 3, c = 9, and d = -8

Plug in values:

(2 + 3i)(9 - 8i) = (2 * 9) + (3i * 9) + (2 * -8i) + (3i * -8i)

(2 + 3i)(9 - 8i) = 18 + 27i - 16i - 24i2

Group the like terms:

(2 + 3i)(9 - 8i) = 18 + (27 - 16)i - 24i2

(2 + 3i)(9 - 8i) = 18 + 11i - 24i2

Simplify our last term:

i2 = √-1 * √-1 = -1, so our last term becomes:

(2 + 3i)(9 - 8i) = 18 + 11i - 24* (-1)

(2 + 3i)(9 - 8i) = 18 + 11i + 24

Group the 2 constants

(2 + 3i)(9 - 8i) = (18 + 24) + 11i

(2 + 3i)(9 - 8i) = 42 + 11i

Final Answer

42 + 11i
Take the Quiz  Switch to Chat Mode


Related Calculators:  Fractions and Mixed Numbers  |  Order of Operations  |  Base Conversion Operations



?>