l
We need two consecutive integers (n) and (n + 1) who have
a product = 20
We need to find two integers, n and n + 1 who have a product of 20
n * (n + 1) = 20
Multiplying through, we get n2 + n = 20
Rearranging the equation we get n2 + n - 20 = 0
a = 1, b = 1, and c = -20
Solution 1 = ½(-b + √b2 - 4ac)
Solution 1 = ½(-1 + √12 - 4 * 1 * -20)
Solution 1 = ½(-1 + √1 - -80)
Solution 1 = ½(-1 + √81)
Solution 1 = ½(-1 + 9)
Solution 1 = ½(8)
Solution 1 = 4
Solution 2 = Solution 1 + 1
Solution 2 = 4 + 1
Solution 2 = 5
Also, since the product of 2 negative #'s is positive, another solution is:
Solution 3 = (-1 * 4) * (-1 * 5)
Solution 3 = -1 * 4
Solution 3 = -4
Solution 4 = -1 * 5
Solution 4 = -5