Using Descartes' Rule of Signs
Find the number of real solutions for :
4x
7 + 3x
6 + x
5 + 2x
4 - x
3 + 9x
2 + x + 1
Evaluate the possible positive roots:
ƒ(x) = 4x
7 + 3x
6 + x
5 + 2x
4 - x
3 + 9x
2 + x
+ 1
There are 2 sign change(s):
Sign Change 1)
+ to
-Sign Change 2)
- to
+Find more possible positive roots
Count down in pairs until we pass zero.
2 roots - 1 pair (2 roots) = 0
2 or 0 positive roots
Calculate possible negative roots:
Given ƒ(x) = 4x
7 + 3x
6 + x
5 + 2x
4 - x
3 + 9x
2 + x + 1
Determine ƒ(
-x)
ƒ(
-x) = 4(
-x)
7 + 3(
-x)
6 + (
-x)
5 + 2(
-x)
4 - (
-x)
3 + 9(
-x)
2 + (
-x) + 1
-x raised to an even power is positive.
Odd exponents become negative:
4(
-x)
7positive constant and odd exponent
We get a negative result of -4x
73(
-x)
6positive constant and even exponent
We get a positive result of + 3x
6(
-x)
5positive constant and odd exponent
We get a negative result of - x
52(
-x)
4positive constant and even exponent
We get a positive result of + 2x
4-(
-x)
3negative constant and odd exponent
We get a positive result of + x
39(
-x)
2positive constant and even exponent
We get a positive result of + 9x
2(
-x)
positive constant and odd exponent
We get a negative result of - x
1
positive constant and even exponent
We get a positive result of + 1
ƒ(-x) = -4x
7 + 3x
6 - x
5 + 2x
4 + x
3 + 9x
2 - x + 1
Evaluate the possible negative roots:
ƒ(x) =
- 4x
7 + 3x
6 - x
5 + 2x
4 + x
3 + 9x
2 - x
+ 1
There are 5 sign change(s):
Sign Change 1)
- to
+Sign Change 2)
+ to
-Sign Change 3)
- to
+Sign Change 4)
+ to
-Sign Change 5)
- to
+Find more possible negative roots
Count down in pairs until we pass zero.
5 roots - 1 pair (2 roots) = 3
3 roots - 1 pair (2 roots) = 1
5 or 3 or 1 negative roots
(5 or 3 or 1) negative roots