0.96^d=0.13333333333

Enter natural log statement


  

Solve 0.96d=0.13333333333

We need to solve for d, therefore, in order to remove it from the power portion, we take the natural log of both sides
Ln(0.96d) = Ln(0.13333333333)

There exists a logarithmic identity which states: Ln(an) = n * Ln(a)
Using that identity, we have n = d and a = 0.96, so our equation becomes:
dLn(0.96) = -2.0149030205673
-0.040821994520255d = -2.0149030205673

Divide each side of the equation by -0.040821994520255

-0.040821994520255d
-0.040821994520255
=
  
-2.0149030205673
-0.040821994520255

d = 49.358269830924