l 10 Unordered Partitions of 5

Enter population n

Enter people in each group

  

Answer
a = 126

↓Steps Explained:↓



How many ways (unordered) can you:

Arrange 10 into groups of 5?

Calculate small groupings (k):

k  =  n
  m

k  =  10
  5

k = 2

Calculate unordered partitions (a):

a  =  n!
  (k!)(m!k)

a  =  10!
  (2!)(5!2)

Calculate factorial

Remember our factorial lesson that:

n! = n * (n - 1) * (n - 2) * .... * 2 * 1

10!

10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2!

a  =  10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2!
  2!5!2

Cancelling 2!:

a  =  10 x 9 x 8 x 7 x 6 x 5 x 4 x 3
  5!2

5! = 5 x 4 x 3 x 2 x 1

5! = 120, so we have:

a  =  10 x 9 x 8 x 7 x 6 x 5 x 4 x 3
  1202

a  =  1814400
  14400

Final Answer

a = 126

Related Calculators:  Cox-Ross-Rubenstein Pricing  |  Permutations and Combinations Operations  |  Multifactorials