Numerical properties of 35

Enter Integer


  

Show numerical properties of 35

We start by listing out divisors for 35
DivisorDivisor Math
135 ÷ 1 = 35
535 ÷ 5 = 7
735 ÷ 7 = 5

Positive or Negative Number Test:

Positive Numbers > 0
Since 35 ≥ 0 and it is an integer
35 is a positive number

Whole Number Test:

Positive numbers including 0
with no decimal or fractions
Since 35 ≥ 0 and it is an integer
35 is a whole number

Prime or Composite Test:

Since 35 has divisors other than 1 and itself
it is a composite number

Perfect/Deficient/Abundant Test:

Calculate divisor sum D
If D = N, then it's perfect
If D > N, then it's abundant
If D < N, then it's deficient
Divisor Sum = 1 + 5 + 7
Divisor Sum = 13
Since our divisor sum of 13 < 35
35 is a deficient number!

Odd or Even Test (Parity Function):

A number is even if it is divisible by 2
If not divisible by 2, it is odd
17.5  =  35
  2

Since 17.5 is not an integer, 35 is not divisible by
it is an odd number
This can be written as A(35) = Odd

Evil or Odious Test:

Get binary expansion
If binary has even amount 1's, then it's evil
If binary has odd amount 1's, then it's odious
35 to binary = 100011
There are 3 1's, 35 is an odious number

Triangular Test:

Can you stack numbers in a pyramid?
Each row above has one item less than the row before it
Using a bottom row of 8 items, we cannot form a pyramid
35 is not triangular

Triangular number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Rectangular Test:

Is there an integer m such that n = m(m + 1)
No integer m exists such that m(m + 1) = 35
35 is not rectangular

Rectangular number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Automorphic (Curious) Test:

Does n2 ends with n
352 = 35 x 35 = 1225
Since 1225 does not end with 35
it is not automorphic (curious)

Automorphic number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Undulating Test:

Do the digits of n alternate in the form abab
Since 35 < 100
We only perform the test on numbers > 99

Square Test:

Is there a number m such that m2 = n
52 = 25 and 62 = 36 which do not equal 35
Therefore, 35 is not a square

Cube Test:

Is there a number m such that m3 = n
33 = 27 and 43 = 64 ≠ 35
Therefore, 35 is not a cube

Palindrome Test:

Is the number read backwards equal to the number?
The number read backwards is 53
Since 35 <> 53
it is not a palindrome

Palindromic Prime Test:

Is it both prime and a palindrome
From above, since 35 is not both prime and a palindrome
it is NOT a palindromic prime

Repunit Test:

A number is repunit if every digit is equal to 1
Since there is at least one digit in 35 ≠ 1
then it is NOT repunit

Apocalyptic Power Test:

Does 2n contains the consecutive digits 666.
235 = 34359738368
Since 235 does not have 666
35 is NOT an apocalyptic power

Pentagonal Test:

It satisfies the form:
n(3n - 1)
2

Using n = 5, we have:
5(3(5 - 1)
2

5(15 - 1)
2

5(14)
2

70
2

35 ← Since this equals 35
this is a pentagonal number

Pentagonal number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Hexagonal Test:

Is there an integer m such that n = m(2m - 1)
No integer m exists such that m(2m - 1) = 35
Therefore 35 is not hexagonal

Hexagonal number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Heptagonal Test:

Is there an integer m such that:
m  =  n(5n - 3)
  2

No integer m exists such that m(5m - 3)/2 = 35
Therefore 35 is not heptagonal

Heptagonal number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Octagonal Test:

Is there an integer m such that n = m(3m - 3)
No integer m exists such that m(3m - 2) = 35
Therefore 35 is not octagonal

Octagonal number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Nonagonal Test:

Is there an integer m such that:
m  =  n(7n - 5)
  2

No integer m exists such that m(7m - 5)/2 = 35
Therefore 35 is not nonagonal

Nonagonal number: 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  

Tetrahedral (Pyramidal) Test:

Satisfies the form:
n(n + 1)(n + 2)
6

Using n = 5, we have:
5(5 + 1)(5 + 2)
6

5(6)(7)
6

210
6

35 ← Since this equals 35
This is a tetrahedral (Pyramidal)number

Narcissistic (Plus Perfect) Test:

Is equal to the square sum of it's m-th powers of its digits
35 is a 2 digit number, so m = 2
Square sum of digitsm = 32 + 52
Square sum of digitsm = 9 + 25
Square sum of digitsm = 34
Since 34 <> 35
35 is NOT narcissistic (plus perfect)

Catalan Test:

Cn  =  2n!
  (n + 1)!n!

Check values of 4 and 5

Using n = 5, we have:
C5  =  (2 x 5)!
  5!(5 + 1)!

Using our factorial lesson
C5  =  10!
  5!6!

C5  =  3628800
  (120)(720)

C5  =  3628800
  86400

C5 = 42
Since this does not equal 35
This is NOT a Catalan number

Using n = 4, we have:
C4  =  (2 x 4)!
  4!(4 + 1)!

Using our factorial lesson
C4  =  8!
  4!5!

C4  =  40320
  (24)(120)

C4  =  40320
  2880

C4 = 14
Since this does not equal 35
This is NOT a Catalan number

Property Summary for the number 35

  ·  Positive
  ·  Whole
  ·  Composite
  ·  Deficient
  ·  Odd
  ·  Odious
  ·  Pentagonal
  ·  Tetrahedral (Pyramidal)


What is the Answer?

Positive
Whole
Composite
Deficient
Odd
Odious
Pentagonal
Tetrahedral (Pyramidal)

How does the Number Property Calculator work?

This calculator determines if an integer you entered has any of the following properties:
* Even Numbers or Odd Numbers (Parity Function or even-odd numbers)
* Evil Numbers or Odious Numbers
* Perfect Numbers, Abundant Numbers, or Deficient Numbers
* Triangular Numbers
* Prime Numbers or Composite Numbers
* Automorphic (Curious)
* Undulating Numbers
* Square Numbers
* Cube Numbers
* Palindrome Numbers
* Repunit Numbers
* Apocalyptic Power
* Pentagonal
* Tetrahedral (Pyramidal)
* Narcissistic (Plus Perfect)
* Catalan
* Repunit
This calculator has 1 input.

What 5 formulas are used for the Number Property Calculator?

  1. Positive Numbers are greater than 0
  2. Whole Numbers are positive numbers, including 0, with no decimal or fractional parts
  3. Even numbers are divisible by 2
  4. Odd Numbers are not divisible by 2
  5. Palindromes have equal numbers when digits are reversed

For more math formulas, check out our Formula Dossier

What 11 concepts are covered in the Number Property Calculator?

divisor
a number by which another number is to be divided.
even
narcissistic numbers
a given number base b is a number that is the sum of its own digits each raised to the power of the number of digits.
number
an arithmetical value, expressed by a word, symbol, or figure, representing a particular quantity and used in counting and making calculations and for showing order in a series or for identification. A quantity or amount.
number property
odd
palindrome
A word or phrase which reads the same forwards or backwards
pentagon
a polygon of five angles and five sides
pentagonal number
A number that can be shown as a pentagonal pattern of dots.
n(3n - 1)/2
perfect number
a positive integer that is equal to the sum of its positive divisors, excluding the number itself.
property
an attribute, quality, or characteristic of something

Example calculations for the Number Property Calculator

  1. 30 as a unique number
  2. 45 as a composite number
  3. numerical properties of 100
  4. properties of 35
  5. tell me about 72
  6. A(4)

Number Property Calculator Video


Tags:



Add This Calculator To Your Website