Enter population count N

Enter sample population count n

Enter Confidence Interval %


p^ = 0.4

Answer
Success!
0.304 < p < 0.496

↓Steps Explained:↓

Construct a 95% confidence interval for the proportion value p

from a population of 100 and a sample size of 40

Confidence Interval Formula for p formula

p^ - zscoreα * σp/√p < p < p^ + zscoreα * σp/√p where:

X = sample mean, s = sample standard deviation, zscore = Normal distribution Z-score from a probability where α = (1 - Confidence Percentage)/2

Calculate p^:

Calculate σp

σp  =  p^(1 - p^)
  N

σp  =  0.4(1 - 0.4)
  100

σp  =  0.4(0.6)
  100

σp  =  0.24
  100

σp

σp = 0.048989794855664

Calculate α

α = 1 - Confidence%

α = 1 - 0.95

α = 0.05

Find α spread range:

α = ½(α)

α = ½(0.05)

α = 0.025

Find z-score for α value for 0.025

zscore0.025 = 1.96 <--- Value can be found on Excel using =NORMSINV(0.975)

Calculate Margin of Error:

MOE = σp x z-score

MOE = 0.048989794855664 x 1.96

MOE = 0.096019997917101

Calculate high end confidence interval total:

High End = p^+ zscoreα x σp

High End = 0.4 + 1.96 * 0.048989794855664

High End = 0.4 + 0.096019997917101

High End = 0.496

Calculate low end confidence interval total:

Low End = p^ - zscoreα x σp

Low End = 0.4 - 1.96 * 0.048989794855664

Low End = 0.4 - 0.096019997917101

Low End = 0.304

Final Answer

0.304 < p < 0.496
Take the Quiz  Switch to Chat Mode


Related Calculators:  Proportion Sample Size  |  Difference of Proportions Test  |  Confidence Interval/Hypothesis Testing for the Difference of Means
What this means is if we repeated experiments, the proportion of such intervals that contain p would be 95%