l 99% Proportion Confidence Interval 120/300

Enter population count N

Enter sample population count n

Enter Confidence Interval %


p^ = 0.4

Answer
Success!
0.3271 < p < 0.4729

↓Steps Explained:↓



Construct a 99% confidence interval for the proportion value p

from a population of 300 and a sample size of 120

Confidence Interval Formula for p formula

p^ - zscoreα * σp/√p < p < p^ + zscoreα * σp/√p where:

X = sample mean, s = sample standard deviation, zscore = Normal distribution Z-score from a probability where α = (1 - Confidence Percentage)/2

Calculate p^:

Calculate σp

σp  =  p^(1 - p^)
  N

σp  =  0.4(1 - 0.4)
  300

σp  =  0.4(0.6)
  300

σp  =  0.24
  300

σp

σp = 0.028284271247462

Calculate α

α = 1 - Confidence%

α = 1 - 0.99

α = 0.01

Find α spread range:

α = ½(α)

α = ½(0.01)

α = 0.005

Find z-score for α value for 0.005

zscore0.005 = 2.576 <--- Value can be found on Excel using =NORMSINV(0.995)

Calculate Margin of Error:

MOE = σp x z-score

MOE = 0.028284271247462 x 2.576

MOE = 0.072860282733462

Calculate high end confidence interval total:

High End = p^+ zscoreα x σp

High End = 0.4 + 2.576 * 0.028284271247462

High End = 0.4 + 0.072860282733462

High End = 0.4729

Calculate low end confidence interval total:

Low End = p^ - zscoreα x σp

Low End = 0.4 - 2.576 * 0.028284271247462

Low End = 0.4 - 0.072860282733462

Low End = 0.3271

Final Answer

0.3271 < p < 0.4729

Related Calculators:  Proportion Sample Size  |  Difference of Proportions Test  |  Confidence Interval/Hypothesis Testing for the Difference of Means
What this means is if we repeated experiments, the proportion of such intervals that contain p would be 99%

h