l
Construct a 99% confidence interval for the proportion value p
from a population of 300 and a sample size of 120
p^ - zscoreα * σp/√p < p < p^ + zscoreα * σp/√p where:
X = sample mean, s = sample standard deviation, zscore = Normal distribution Z-score from a probability where α = (1 - Confidence Percentage)/2
σp = | √p^(1 - p^) |
√N |
σp = | √0.4(1 - 0.4) |
√300 |
σp = | √0.4(0.6) |
√300 |
σp = | √0.24 |
√300 |
σp
σp = 0.028284271247462
α = 1 - Confidence%
α = 1 - 0.99
α = 0.01
α = ½(α)
α = ½(0.01)
α = 0.005
zscore0.005 = 2.576 <--- Value can be found on Excel using =NORMSINV(0.995)
MOE = σp x z-score
MOE = 0.028284271247462 x 2.576
MOE = 0.072860282733462
High End = p^+ zscoreα x σp
High End = 0.4 + 2.576 * 0.028284271247462
High End = 0.4 + 0.072860282733462
High End = 0.4729
Low End = p^ - zscoreα x σp
Low End = 0.4 - 2.576 * 0.028284271247462
Low End = 0.4 - 0.072860282733462
Low End = 0.3271