Solve the quadratic:
a = 1, b = 1, c = 1
= | -b ± √b2 - 4ac |
2a |
-b = -(1)
-b = -1
Δ = b2 - 4ac:
Δ = 12 - 4 x 1 x 1
Δ = 1 - 4
Δ = -3 <--- Discriminant
Since Δ < 0, we expect two complex roots.
√Δ = √(-3)
Since the square root < 0, we have an irrational answer
Numerator 1 = -b + √Δ
Numerator 1 = -1 + √-3
Numerator 2 = -b - √Δ
Numerator 2 = -1 - √-3
Denominator = 2 * a
Denominator = 2 * 1
Denominator = 2
Solution 1 = | Numerator 1 |
Denominator |
Solution 1 = (-1 + √-3)/2
(Solution 1, Solution 2) = ((-1 + √3i)/2, (-1 - √3i)/2)
Solution 2 = (-1 - √-3)/2