Enter Quadratic equation/inequality below

Hint Number =

Answer
Success!
(Solution 1, Solution 2) = ((-1 + √3i)/2, (-1 - √3i)/2)

↓Steps Explained:↓

Solve the quadratic:

Set up the a, b, and c values:

a = 1, b = 1, c = 1

Quadratic Formula

  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(1)

-b = -1

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = 12 - 4 x 1 x 1

Δ = 1 - 4

Δ = -3 <--- Discriminant

Since Δ < 0, we expect two complex roots.

Take the square root of Δ

Δ = √(-3)

Since the square root < 0, we have an irrational answer

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = -1 + √-3

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = -1 - √-3

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 1

Denominator = 2

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1 = (-1 + √-3)/2

Solution 2

(Solution 1, Solution 2) = ((-1 + √3i)/2, (-1 - √3i)/2)

Solution 2 = (-1 - √-3)/2

Final Answer

(Solution 1, Solution 2) = ((-1 + √3i)/2, (-1 - √3i)/2)
Take the Quiz  Switch to Chat Mode


Related Calculators:  Quartic Equations  |  3 Point Equation  |  Monomials