l Solve Quadratic Equation for -120t^2-40t+1200=0

Enter Quadratic equation/inequality below

Hint Number =

Answer
(Solution 1, Solution 2) = (-3.3333333333333, 3)

↓Steps Explained:↓



Solve the quadratic:

-120t2-40t+1200 = 0

Set up the a, b, and c values:

a = -120, b = -40, c = 1200

Quadratic Formula

t  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(-40)

-b = 40

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = -402 - 4 x -120 x 1200

Δ = 1600 - -576000

Δ = 577600 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(577600)

Δ = 760

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = 40 + 760

Numerator 1 = 800

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = 40 - 760

Numerator 2 = -720

Calculate 2a

Denominator = 2 * a

Denominator = 2 * -120

Denominator = -240

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1 = -3.3333333333333 or 10/-3

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2 = 3

Solution Set

(Solution 1, Solution 2) = (-3.3333333333333, 3)

Prove our first answer

(-3.3333333333333)2 - 40(-3.3333333333333) + 1200 ? 0

(11.111111111111) + 133.333333333331200 ? 0

-1333.3333333333 + 133.333333333331200 ? 0

0 = 0

Prove our second answer

(3)2 - 40(3) + 1200 ? 0

(9) - 1201200 ? 0

-1080 - 1201200 ? 0

0 = 0

Final Answer

(Solution 1, Solution 2) = (-3.3333333333333, 3)

Related Calculators:  Quartic Equations  |  3 Point Equation  |  Monomials
h