l Solve Quadratic Equation for 2n^2+2n-1512=0

Enter Quadratic equation/inequality below

Hint Number =

Answer
(Solution 1, Solution 2) = (27, -28)

↓Steps Explained:↓



Solve the quadratic:

2n2+2n-1512 = 0

Set up the a, b, and c values:

a = 2, b = 2, c = -1512

Quadratic Formula

n  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(2)

-b = -2

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = 22 - 4 x 2 x -1512

Δ = 4 - -12096

Δ = 12100 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(12100)

Δ = 110

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = -2 + 110

Numerator 1 = 108

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = -2 - 110

Numerator 2 = -112

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 2

Denominator = 4

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1 = 27

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2 = -28

Solution Set

(Solution 1, Solution 2) = (27, -28)

Prove our first answer

(27)2 + 2(27) - 1512 ? 0

(729) + 541512 ? 0

1458 + 541512 ? 0

0 = 0

Prove our second answer

(-28)2 + 2(-28) - 1512 ? 0

(784) - 561512 ? 0

1568 - 561512 ? 0

0 = 0

Final Answer

(Solution 1, Solution 2) = (27, -28)

Related Calculators:  Quartic Equations  |  3 Point Equation  |  Monomials
h