l Solve Quadratic Equation for n^2+n=20

Enter Quadratic equation/inequality below

Hint Number =

Solve the quadratic:

n2+n = 20

The quadratic you entered is not in standard form:
ax2 + bx + c = 0

Subtract 20 from both sides

n2+n - 20 = 20 - 20
n2+n - 20 = 0

Set up the a, b, and c values:

a = 1, b = 1, c = -20

Quadratic Formula

n  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(1)

-b = -1

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = 12 - 4 x 1 x -20

Δ = 1 - -80

Δ = 81 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(81)

Δ = 9

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = -1 + 9

Numerator 1 = 8

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = -1 - 9

Numerator 2 = -10

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 1

Denominator = 2

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1  =  8
  2

Solution 1 = 4

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2  =  -10
  2

Solution 2 = -5

Solution Set

(Solution 1, Solution 2) = (4, -5)


Prove our first answer

(4)2 + 1(4) - 20 ? 0

(16) + 420 ? 0

16 + 420 ? 0

0 = 0

Prove our second answer

(-5)2 + 1(-5) - 20 ? 0

(25) - 520 ? 0

25 - 520 ? 0

0 = 0

Final Answer


(Solution 1, Solution 2) = (4, -5)