Enter Quadratic equation/inequality below

Hint Number =

Solve the quadratic:

n2-4n-21 = 0

Set up the a, b, and c values:

a = 1, b = -4, c = -21

Quadratic Formula

n  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(-4)

-b = 4

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = -42 - 4 x 1 x -21

Δ = 16 - -84

Δ = 100 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(100)

Δ = 10

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = 4 + 10

Numerator 1 = 14

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = 4 - 10

Numerator 2 = -6

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 1

Denominator = 2

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1  =  14
  2

Solution 1 = 7

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2  =  -6
  2

Solution 2 = -3

Solution Set

(Solution 1, Solution 2) = (7, -3)


Prove our first answer

(7)2 - 4(7) - 21 ? 0

(49) - 2821 ? 0

49 - 2821 ? 0

0 = 0

Prove our second answer

(-3)2 - 4(-3) - 21 ? 0

(9) + 1221 ? 0

9 + 1221 ? 0

0 = 0

Final Answer


(Solution 1, Solution 2) = (7, -3)