Enter Quadratic equation/inequality below

Hint Number =

Answer
Success!
(Solution 1, Solution 2) = (5, -6)

↓Steps Explained:↓

Solve the quadratic:

x2+x-30

Set up the a, b, and c values:

a = 1, b = 1, c = -30

Quadratic Formula

x  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(1)

-b = -1

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = 12 - 4 x 1 x -30

Δ = 1 - -120

Δ = 121 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(121)

Δ = 11

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = -1 + 11

Numerator 1 = 10

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = -1 - 11

Numerator 2 = -12

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 1

Denominator = 2

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1 = 5

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2 = -6

Solution Set

(Solution 1, Solution 2) = (5, -6)

Prove our first answer

(5)2 + 1(5) - 30 ? 0

(25) + 530 ? 0

25 + 530 ? 0

0 = 0

Prove our second answer

(-6)2 + 1(-6) - 30 ? 0

(36) - 630 ? 0

36 - 630 ? 0

0 = 0

Final Answer

(Solution 1, Solution 2) = (5, -6)
Take the Quiz  Switch to Chat Mode


Related Calculators:  Quartic Equations  |  3 Point Equation  |  Monomials