exact time


Your Search returned 5 results for exact time


A 50-pound bowling ball and an 8-pound bowling ball are dropped from a tall building. Which ball wil
A 50-pound bowling ball and an 8-pound bowling ball are dropped from a tall building. Which ball will hit first? [B]They will land at the same time[/B] [B]How fast something falls due to gravity is determined by a number known as the "acceleration of gravity", which is 9.81 m/s^2 at the surface of our Earth. In one second, [I]any object[/I]ís downward velocity will increase by 9.81 m/s because of gravity. This is just the way gravity works - it accelerates everything at exactly the same rate.[/B]

Anna has 50 coins in her piggy bank. She notices that she only has dimes and pennies. If she has exa
Anna has 50 coins in her piggy bank. She notices that she only has dimes and pennies. If she has exactly four times as many pennies as dimes, how many pennies are in her piggy bank? Let d be the number of dimes, and p be the number of pennies. We're given: [LIST=1] [*]d + p = 50 [*]p = 4d [/LIST] Substitute (2) into (1) d + 4d = 50 [URL='https://www.mathcelebrity.com/1unk.php?num=d%2B4d%3D50&pl=Solve']Type that equation into our search engine[/URL]. We get: d = 10 Now substitute this into Equation (2): p = 4(10) [B]p = 40[/B]

Method of Equated Time-Exact Method-Macaulay Duration-Volatility
Given a set of cash flows at certain times, and a discount rate, this will calculate t using the equated time method and the exact method, as well as the macaulay duration and volatility

There is a bag filled with 5 blue, 6 red and 2 green marbles. A marble is taken at random from the b
There is a bag filled with 5 blue, 6 red and 2 green marbles. A marble is taken at random from the bag, the colour is noted and then it is replaced. Another marble is taken at random. What is the probability of getting exactly 1 blue? Find the total number of marbles in the bag: Total marbles = 5 blue + 6 red + 2 green Total marbles = 13 The problem asks for exactly one blue in 2 draws [I]with replacement[/I]. Which means you could draw as follows: Blue, Not Blue Not Blue, Blue The probability of drawing a blue is 5/13, since we replace the marbles in the bag each time. The probability of not drawing a blue is (6 + 2)/13 = 8/13 And since each of the 2 draws are independent of each other, we multiply the probability of each draw: Blue, Not Blue = 5/13 * 8/13 =40/169 Not Blue, Blue = 8/13 * 5/13 = 40/169 We add both probabilities since they both count under our scenario: 40/169 + 40/169 = 80/169 Checking our [URL='https://www.mathcelebrity.com/fraction.php?frac1=80%2F169&frac2=3%2F8&pl=Simplify']fraction simplification calculator[/URL], we see you cannot simplify this fraction anymore. So our probability stated in terms of a fraction is 80/169 [URL='https://www.mathcelebrity.com/perc.php?num=80&den=169&pcheck=1&num1=16&pct1=80&pct2=70&den1=80&idpct1=10&hltype=1&idpct2=90&pct=82&decimal=+65.236&astart=12&aend=20&wp1=20&wp2=30&pl=Calculate']Stated in terms of a decimal[/URL], it's 0.4734

You can get 2 different moving companies to help you move. The first one charges $150 up front then
You can get 2 different moving companies to help you move. The first one charges $150 up front then $38 an hour. The second one charges $230 then $30 an hour, at what exact time will Both companies cost the same [U]Company 1: We set up the cost equation C(h) where h is the number of hours[/U] C(h) = Hourly Rate * h + up front charge C(h) = 38h + 150 [U]Company 2: We set up the cost equation C(h) where h is the number of hours[/U] C(h) = Hourly Rate * h + up front charge C(h) = 30h + 230 The question asks for h when both cost equations C(h) are equal. So we set both C(h) equations equal to other: 38h + 150 = 30h + 230 To solve for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=38h%2B150%3D30h%2B230&pl=Solve']type this equation into our search engine [/URL]and we get: h = [B]10[/B]