Enter synthetic division coefficients

x6

x5

x4

x3

x2

x
Constant
Use synthetic division for:

2x3 - 4x2 - 22x + 24
x - 1

Determine our root divisor:

Solve the divisor equation x - 1 = 0
Add 1 to each side of the equation to get
x - 1 + 1 = 0 + 1
Therefore, our root becomes x = 1

Write down coefficients and root of 1

                  2         -4         -22         24
  1                                      
         


Bring down the first coefficient of 2

                  2         -4         -22         24
  1           ↓                           
                  2                           


Multiply our root 1 by 2
Take 2 and put that in column 2:

                  2         -4         -22         24
  1                    2                  
                  2                           


Add the new entry of 2

2 + -4 = -2
Put this in the answer column 2:

                  2         -4         -22         24
  1                    2                  
                  2         -2                  


Multiply our root 1 by -2
Take -2 and put that in column 3:

                  2         -4         -22         24
  1                    2         -2         
                  2         -2                  


Add the new entry of -2

-2 + -22 = -24
Put this in the answer column 3:

                  2         -4         -22         24
  1                    2         -2         
                  2         -2         -24         


Multiply our root 1 by -24
Take -24 and put that in column 4:

                  2         -4         -22         24
  1                    2         -2         -24
                  2         -2         -24         


Add the new entry of -24

-24 + 24 = 0
Put this in the answer column 4:

                  2         -4         -22         24
  1                    2         -2         -24
                  2         -2         -24         0


Leading Answer Term = x(3 - 1) = x2

Since the last number in our result line = 0, we will not have a remainder and have a clean quotient which is shown below in our answer:


It appears your answer forms a quadratic equation since the maximum power of your result equation is 2 and your remainder is zero. Click here to solve this quadratic equation