l Distance between (1,2,3) and (7,5,5)

Enter point 1

(x1: , y1: z1: )

Enter point 2

(x2: y2: z2: )
  

Answer
Distance = 7
(x - 1)/6, (y - 2)/3(z - 3)/2

↓Steps Explained:↓



Calculate the distance between:

(1, 2, 3) and (7, 5, 5)

Also calculate the parametric and symmetric forms

Distance formula for 3-D points

Distance = √(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

Distance = √(7 - 1)2 + (5 - 2)2 + (5 - 3)2

Distance = √62 + 32 + 22

Distance = √36 + 9 + 4

Distance = √49

Distance = 7

Parametric Equation Form:

(x,y,z) = (x0,y0,z0) + t(a,b,c)

Plugging in our numbers, we get:

(x,y,z) = (1,2,3) + t(7 - 1,5 - 2,5 - 3)

(x,y,z) = (1,2,3) + t(6,3 ,2)

x = 1 + 6t

y = 2 + 3t

z = 3 + 2t

Symmetric Equation Form:

x - x0
a
=
  
y - y0
b
=
  
z - z0
c

Plugging in our numbers, we get:

x - 1
6
=
  
y - 2
3
=
  
z - 3
2

Final Answers

Distance = 7
(x - 1)/6, (y - 2)/3(z - 3)/2

Related Calculators:  Unit Circle  |  Line Equation-Slope-Distance-Midpoint-Y intercept  |  Equation of a Plane
h