Enter angle in degrees or radians:


           
           
  

Calculate tan(230)

tan is found using Opposite/Adjacent

Determine quadrant:

Since 180 < 230 < 270 degrees
it is located in Quadrant III

tan is positive.

Determine angle type:

230 > 90°, so it is obtuse

tan(230) = 1.1917535814925

Special Angle Values

θ°θradsin(θ)cos(θ)tan(θ)csc(θ)sec(θ)cot(θ)
0010010
30°π/61/23/23/322√3/33
45°π/42/22/21221
60°π/33/21/232√3/323/3
90°π/210N/A10N/A
120°2π/33/2-1/2-√32√3/3-2-√3/3
135°3π/42/2-√2/2-12-√2-1
150°5π/61/2-√3/2-√3/32-2√3/3-√3
180°π0-100-1N/A
210°7π/6-1/2-√3/23/3-2-2√3/33
225°5π/4-√2/2-√2/21-√2-√21
240°4π/3-√3/2-1/23-2√3/3-23/3
270°3π/2-10N/A-10N/A
300°5π/3-√3/21/2-√3-2√3/32-√3/3
315°7π/4-√2/22/2-1-√22-1
330°11π/6-1/23/2-√3/3-22√3/3-√3

Show Unit Circle

Final Answer


tan(230) = 1.1917535814925