Show coterminal angles for
2π/3
Coterminal Angles = θ ± 2π
2π | |
3 |
3 x 2π | |
3 x 1 |
2π + 6π | |
3 |
8π | |
3 |
To get the other coterminal angle, we subtract instead of add
2π - 6π | |
3 |
-4π | |
3 |
θ° | θrad | sin(θ) | cos(θ) | tan(θ) | csc(θ) | sec(θ) | cot(θ) |
---|---|---|---|---|---|---|---|
0° | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
30° | π/6 | 1/2 | √3/2 | √3/3 | 2 | 2√3/3 | √3 |
45° | π/4 | √2/2 | √2/2 | 1 | √2 | √2 | 1 |
60° | π/3 | √3/2 | 1/2 | √3 | 2√3/3 | 2 | √3/3 |
90° | π/2 | 1 | 0 | N/A | 1 | 0 | N/A |
120° | 2π/3 | √3/2 | -1/2 | -√3 | 2√3/3 | -2 | -√3/3 |
135° | 3π/4 | √2/2 | -√2/2 | -1 | √2 | -√2 | -1 |
150° | 5π/6 | 1/2 | -√3/2 | -√3/3 | 2 | -2√3/3 | -√3 |
180° | π | 0 | -1 | 0 | 0 | -1 | N/A |
210° | 7π/6 | -1/2 | -√3/2 | √3/3 | -2 | -2√3/3 | √3 |
225° | 5π/4 | -√2/2 | -√2/2 | 1 | -√2 | -√2 | 1 |
240° | 4π/3 | -√3/2 | -1/2 | √3 | -2√3/3 | -2 | √3/3 |
270° | 3π/2 | -1 | 0 | N/A | -1 | 0 | N/A |
300° | 5π/3 | -√3/2 | 1/2 | -√3 | -2√3/3 | 2 | -√3/3 |
315° | 7π/4 | -√2/2 | √2/2 | -1 | -√2 | √2 | -1 |
330° | 11π/6 | -1/2 | √3/2 | -√3/3 | -2 | 2√3/3 | -√3 |