A binomial distribution has a probability of success = 0.4
Calculate the probability of you having at least 3 successes in 10 trials:
f(k;n,p) = | n! * pkqn - k | |
k!(n - k)! |
P(x >= 3) = 1 - P(x < 3) ΣP(x = k) where (0 <= k <= 3)
q = 1 - p (q represents the probability of failure)
q = 1 - 0.4
q = 0.6
n! = 10!
10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
10! = 3628800
Set x = 0 for the binomial probability formula
k! = 0!
0! = 1
(n - k)! = (10 - 0)!
(n - k)! = 10!
10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
10! = 3628800
P(x = 0) = | 10! * 0.400.6(10 - 0) | |
0!(10 - 0)! |
P(x = 0) = | 3628800 * 1 * 0.610 | |
1 * 3628800 |
P(x = 0) = | 3628800 * 1 * 0.0060466176 | |
3628800 |
P(x = 0) = | 21941.96594688 | |
3628800 |
P(x = 0) = 0.006
Set x = 0 for the binomial probability formula
k! = 1!
1! = 1
(n - k)! = (10 - 1)!
(n - k)! = 9!
9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
9! = 362880
P(x = 1) = | 10! * 0.410.6(10 - 1) | |
1!(10 - 1)! |
P(x = 1) = | 3628800 * 0.4 * 0.69 | |
1 * 362880 |
P(x = 1) = | 3628800 * 0.4 * 0.010077696 | |
362880 |
P(x = 1) = | 14627.97729792 | |
362880 |
P(x = 1) = 0.0403
Set x = 0 for the binomial probability formula
k! = 2!
2! = 2 * 1
2! = 2
(n - k)! = (10 - 2)!
(n - k)! = 8!
8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
8! = 40320
P(x = 2) = | 10! * 0.420.6(10 - 2) | |
2!(10 - 2)! |
P(x = 2) = | 3628800 * 0.16 * 0.68 | |
2 * 40320 |
P(x = 2) = | 3628800 * 0.16 * 0.01679616 | |
80640 |
P(x = 2) = | 9751.98486528 | |
80640 |
P(x = 2) = 0.1209
Set x = 0 for the binomial probability formula
k! = 3!
3! = 3 * 2 * 1
3! = 6
(n - k)! = (10 - 3)!
(n - k)! = 7!
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1
7! = 5040
P(x = 3) = | 10! * 0.430.6(10 - 3) | |
3!(10 - 3)! |
P(x = 3) = | 3628800 * 0.064 * 0.67 | |
6 * 5040 |
P(x = 3) = | 3628800 * 0.064 * 0.0279936 | |
30240 |
P(x = 3) = | 6501.32324352 | |
30240 |
P(x = 3) = 0.215
P(x > 3) = 1 - (P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3))
P(x > 3) = 1 - (0.006 + 0.0403 + 0.1209 + 0.215)
P(x > 3) = 1 - 0.3822
Since q = 1 - p, we have n(1 - p) = 10(1 - 0.4)
nq = 10(0.6)
nq = 6
μ = np
μ = 10 x 0.4
μ = 4
σ2 = np(1 - p)
σ2 = 10 x 0.4 x (1 - 0.4)
σ2 = 4 x 0.6
σ2 = 2.4
σ = √σ2 = √np(1 - p)
σ = √2.4
σ = 1.5492
Skewness = | 1 - 2p |
√np(1 - p) |
Skewness = | 1 - 2(0.4) |
√10(0.4)(1 - 0.4) |
Skewness = | 1 - 0.8) |
√10(0.4)(0.6) |
Skewness = | 0.2 |
√2.4 |
Skewness = 0.083333333333333
Kurtosis = | 1 - 6p(1 - p) |
np(1 - p) |
Kurtosis = | 1 - 6(0.4)(1 - 0.4) |
10(0.4)(1 - 0.4) |
Kurtosis = | 1 - (2.4)(0.6) |
10(0.4)(0.6) |
Kurtosis = | 1 - 1.44 |
2.4 |
Kurtosis = -0.18333333333333