Using the rational roots (rational zero) theorem:
Find roots for 2x
3 - 4x
2 - 22x + 24
Rational roots of a polynomial will be q/p where
q is a factor of the constant term (24)
and p is a factor of the leading x
3 coefficient (2)
Determine our list of p values first:
Numbers (1 - 2) | 2 ÷ Number List | Factor of p? | 1 | 2 ÷ 1 = 2 | Y |
2 | 2 ÷ 2 = 1 | Y |
Our factor list for p is {1,2}
Let's determine our list of q values next:
Numbers (1 - 24) | 24 ÷ Number List | Factor of q? | 1 | 24 ÷ 1 = 24 | Y |
2 | 24 ÷ 2 = 12 | Y |
3 | 24 ÷ 3 = 8 | Y |
4 | 24 ÷ 4 = 6 | Y |
6 | 24 ÷ 6 = 4 | Y |
8 | 24 ÷ 8 = 3 | Y |
12 | 24 ÷ 12 = 2 | Y |
24 | 24 ÷ 24 = 1 | Y |
Our factor list for q is {1,2,3,4,6,8,12,24}
Calculate our q ÷ p = r values
p | q | r = q ÷ p | ƒ(r) = 2r3 - 4r2 - 22r + 24 | ƒ(r) value | -1 x r | ƒ(-r) = 2r3 - 4r2 - 22r + 24 | ƒ(-r) value | 1 | 1 | 1 | 2(1)3 - 4(1)2 - 22(1) + 24 | 0 | -1 | 2(-1)3 - 4(-1)2 - 22(-1) + 24 | 40 |
1 | 2 | 2 | 2(2)3 - 4(2)2 - 22(2) + 24 | -20 | -2 | 2(-2)3 - 4(-2)2 - 22(-2) + 24 | 36 |
1 | 3 | 3 | 2(3)3 - 4(3)2 - 22(3) + 24 | -24 | -3 | 2(-3)3 - 4(-3)2 - 22(-3) + 24 | 0 |
1 | 4 | 4 | 2(4)3 - 4(4)2 - 22(4) + 24 | 0 | -4 | 2(-4)3 - 4(-4)2 - 22(-4) + 24 | -80 |
1 | 6 | 6 | 2(6)3 - 4(6)2 - 22(6) + 24 | 180 | -6 | 2(-6)3 - 4(-6)2 - 22(-6) + 24 | -420 |
1 | 8 | 8 | 2(8)3 - 4(8)2 - 22(8) + 24 | 616 | -8 | 2(-8)3 - 4(-8)2 - 22(-8) + 24 | -1080 |
1 | 12 | 12 | 2(12)3 - 4(12)2 - 22(12) + 24 | 2640 | -12 | 2(-12)3 - 4(-12)2 - 22(-12) + 24 | -3744 |
1 | 24 | 24 | 2(24)3 - 4(24)2 - 22(24) + 24 | 24840 | -24 | 2(-24)3 - 4(-24)2 - 22(-24) + 24 | -29400 |
2 | 1 | 0.5 | 2(0.5)3 - 4(0.5)2 - 22(0.5) + 24 | 12.25 | -0.5 | 2(-0.5)3 - 4(-0.5)2 - 22(-0.5) + 24 | 33.75 |
2 | 3 | 1.5 | 2(1.5)3 - 4(1.5)2 - 22(1.5) + 24 | -11.25 | -1.5 | 2(-1.5)3 - 4(-1.5)2 - 22(-1.5) + 24 | 41.25 |
Real Roots → ƒ(r) = 0
Root List = {
1,
-3,
4}
These are the root(s) using direct substitution.
Below is a link using synthetic division
Click
here to see the synthetic division for our polynomial using our root of
1Click
here to see the synthetic division for our polynomial using our root of
-3Click
here to see the synthetic division for our polynomial using our root of
4Final Answer
(4, -3, 1)
Related Calculators:
Literal Equations |
3 Point Equation |
Simultaneous Equations