Given ƒ(x) = 2x
3 - 4x
2 - 22x + 24dx
Determine the integral ∫ƒ(x)
Go through and integrate each term
Integrate term 1
ƒ(x) = 2x
3Use the power rule
∫ƒ(x) of the expression ax
n = 2, n = 3
and x is the variable we integrate
Simplify our fraction.
Divide top and bottom by 2
Integrate term 2
ƒ(x) = -4x
2Use the power rule
∫ƒ(x) of the expression ax
n = -4, n = 2
and x is the variable we integrate
Integrate term 3
ƒ(x) = -22x
Use the power rule
∫ƒ(x) of the expression ax
n = -22, n = 1
and x is the variable we integrate
∫ƒ(x) = | -22x(1 + 1) |
| 1 + 1 |
Simplify our fraction.
Divide top and bottom by 2
∫ƒ(x) = -11x
2
Integrate term 4
ƒ(x) = 24
Use the power rule
∫ƒ(x) of the expression ax
n = 24, n = 0
and x is the variable we integrate
∫ƒ(x) = 24x
Collecting all of our integrated terms we get:
∫ƒ(x) =
x4/2 - 4x3/3 - 11x2 + 24xEvaluate ∫ƒ(x) on the interval [0,1]
The value of the integral over an interval is ∫ƒ(1) - ∫ƒ(0)
Evaluate ∫ƒ(1)
∫ƒ(1) = (
1)
4/2 - 4(
1)
3/3 - 11(
1)
2 + 24(
1)
∫ƒ(1) = (1)/2 - 4(1)/3 - 11(1) + 24(
1)
∫ƒ(1) = 0.5 - 1.3333333333333 - 11 + 24
∫ƒ(1) =
12.166666666667Evaluate ∫ƒ(0)
∫ƒ(0) = (
0)
4/2 - 4(
0)
3/3 - 11(
0)
2 + 24(
0)
∫ƒ(0) = (0)/2 - 4(0)/3 - 11(0) + 24(
0)
∫ƒ(0) = 0 - 0 - 0 - 0
∫ƒ(0) =
0Determine our answer
∫ƒ(x) on the interval [0,1] = ∫ƒ(1) - ∫ƒ(0)
∫ƒ(x) on the interval [0,1] = 12.166666666667 - 0
Answer
Success!
∫ƒ(x) on the interval [0,1] = 12.166666666667
↓Steps Explained:↓
Final Answer
∫ƒ(x) on the interval [0,1] =
12.166666666667
Related Calculators:
Polynomial |
Monomials |
Synthetic Division