Enter your expression below:


ƒ()
ƒ'()

n =

Given ƒ(x) = 3x4 + 6x3 - 123x2 - 126x + 1080dx
Determine the integral ∫ƒ(x)
Go through and integrate each term

Integrate term 1

ƒ(x) = 3x4

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= 3, n = 4
and x is the variable we integrate
∫ƒ(x)  =  3x(4 + 1)
  4 + 1

∫ƒ(x)  =  3x5
  5


Integrate term 2

ƒ(x) = 6x3

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= 6, n = 3
and x is the variable we integrate
∫ƒ(x)  =  6x(3 + 1)
  3 + 1

∫ƒ(x)  =  6x4
  4

Simplify our fraction.
Divide top and bottom by 2
∫ƒ(x)  =   + 3x4
  2


Integrate term 3

ƒ(x) = -123x2

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= -123, n = 2
and x is the variable we integrate
∫ƒ(x)  =  -123x(2 + 1)
  2 + 1

∫ƒ(x)  =  -123x3
  3

Simplify our fraction.
Divide top and bottom by 3
∫ƒ(x) = -41x3

Integrate term 4

ƒ(x) = -126x

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= -126, n = 1
and x is the variable we integrate
∫ƒ(x)  =  -126x(1 + 1)
  1 + 1

∫ƒ(x)  =  -126x2
  2

Simplify our fraction.
Divide top and bottom by 2
∫ƒ(x) = -63x2

Integrate term 5

ƒ(x) = 1080

Use the power rule

∫ƒ(x) of the expression axn
ax(n + 1)
n + 1

= 1080, n = 0
and x is the variable we integrate
∫ƒ(x)  =  1080x(0 + 1)
  0 + 1

∫ƒ(x) = 1080x

Collecting all of our integrated terms we get:

∫ƒ(x) = 3x5/5 + 3x4/2 - 41x3 - 63x2 + 1080x

Evaluate ∫ƒ(x) on the interval [0,1]

The value of the integral over an interval is ∫ƒ(1) - ∫ƒ(0)

Evaluate ∫ƒ(1)

∫ƒ(1) = 3(1)5/5 + 3(1)4/2 - 41(1)3 - 63(1)2 + 1080(1)
∫ƒ(1) = 3(1)/5 + 3(1)/2 - 41(1) - 63(1) + 1080(1)
∫ƒ(1) = 0.6 + 1.5 - 41 - 63 + 1080
∫ƒ(1) = 978.1

Evaluate ∫ƒ(0)

∫ƒ(0) = 3(0)5/5 + 3(0)4/2 - 41(0)3 - 63(0)2 + 1080(0)
∫ƒ(0) = 3(0)/5 + 3(0)/2 - 41(0) - 63(0) + 1080(0)
∫ƒ(0) = 0 - 0 - 0 - 0 - 0
∫ƒ(0) = 0

Determine our answer

∫ƒ(x) on the interval [0,1] = ∫ƒ(1) - ∫ƒ(0)
∫ƒ(x) on the interval [0,1] = 978.1 - 0

Final Answer


∫ƒ(x) on the interval [0,1] = 978.1