l Confidence Interval for the Mean Calculator
Enter N Enter X Enter σ or s Enter Confidence Interval % Rounding Digits
   

A large sample of 149 units has a mean 61 and a standard deviation σ of 10

Find a 99% confidence interval of the mean μ

Confidence Interval Formula for μ

X - zscoreα/2 * s/√n < μ < X + zscoreα/2 * s/√n where:

X = sample mean, s = sample standard deviation, zscore = Normal distribution Z-score from a probability where α = (1 - Confidence Percentage)/2

Calculate α

α = 1 - Confidence%

α = 1 - 0.99

α = 0.01

Find α spread range:

α = ½(α)

α = ½(0.01)

α = 0.005

Find z-score for α value for 0.005

zscore0.005 = 2.576
<--- Value can be found on Excel using =NORMSINV(0.995)

Calculate the Standard Error of the Mean:

SEM  =  σ
  n

SEM  =  10
  149

SEM  =  10
  12.206555615734

SEM = 0.8192

Calculate high end confidence interval total:

High End = X + zscoreα * s/√n

High End = 61 + 2.576 * 10/√149

High End = 61 + 2.576 * 0.81923192051904

High End = 61 + 2.110341427257

High End = 63.1103

Calculate low end confidence interval total:

Low End = X - zscoreα * s/√n

Low End = 61 - 2.576 * 10/√149

Low End = 61 - 2.576 * 0.81923192051904

Low End = 61 - 2.110341427257

Low End = 58.8897

Final Answer


58.8897 < μ < 63.1103

What this means is if we repeated experiments, the proportion of such intervals that contain μ would be 99%