l
A large sample of 149 units has a mean 61 and a standard deviation σ of 10
Find a 99% confidence interval of the mean μ
X - zscoreα/2 * s/√n < μ < X + zscoreα/2 * s/√n where:
X = sample mean, s = sample standard deviation, zscore = Normal distribution Z-score from a probability where α = (1 - Confidence Percentage)/2
α = 1 - Confidence%
α = 1 - 0.99
α = 0.01
α = ½(α)
α = ½(0.01)
α = 0.005
zscore0.005 = 2.576
<--- Value can be found on Excel using =NORMSINV(0.995)
SEM = | σ |
√n |
SEM = | 10 |
√149 |
SEM = | 10 |
12.206555615734 |
SEM = 0.8192
High End = X + zscoreα * s/√n
High End = 61 + 2.576 * 10/√149
High End = 61 + 2.576 * 0.81923192051904
High End = 61 + 2.110341427257
High End = 63.1103
Low End = X - zscoreα * s/√n
Low End = 61 - 2.576 * 10/√149
Low End = 61 - 2.576 * 0.81923192051904
Low End = 61 - 2.110341427257
Low End = 58.8897