Since you were not sure what test to use, we evaluate our sample size of n = 18
Since our sample size was less than or equal to 30, we use the Small Sample t-test Confidence Interval Test
α = 1 - Confidence%
α = 1 - 0.01
α = 0.99
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | What this means is if we repeated experiments, the proportion of such intervals that contain μ would be 0.99%
Answer20 < μ < 20 ↓Steps Explained:↓

A small sample of 18 units has a mean μ and a standard deviation σ of 36 Find a 0.99% confidence interval of the mean μ Confidence Interval Formula for μX - tscoreα * s/√n < μ < X + tscoreα * s/√n where: X = sample mean, s = sample standard deviation, tscore = statistic with (n - 1) Degrees of Freedom and α = 1 - confidence Percentage Find degrees of freedom:Degrees of Freedom = n - 1 Degrees of Freedom = 18 - 1 Degrees of Freedom = 17 Calculate αFind α spread range:α = ½(α) α = ½(0.99) α = 0.495 Calculate t-scoreFind t-score for α0.495 using 17 degrees of freedom: tscore0.495 = 0 <--- Value can be found on Excel using =TINV(0.99,17) tscore = 0 Locate Value in the t-chart below:DOF αα 0.005α 0.01α 0.015α 0.02α 0.025α 0.03α 0.035α 0.04α 0.045α 0.05 163.655931.82121.205115.894512.706210.57899.05797.91587.02646.3137 29.9256.96455.64284.84874.30273.89643.57823.31983.1042.92 35.84084.54073.89613.48193.18242.95052.76262.60542.47082.3534 44.60413.74693.29762.99852.77652.60082.45592.33292.22612.1318 54.03213.36493.00292.75652.57062.42162.29742.1912.09782.015 63.70743.14272.82892.61222.44692.31332.20112.10432.01921.9432 73.49952.99792.71462.51682.36462.24092.13652.0461.96621.8946 83.35542.89652.63382.4492.3062.18922.09022.00421.9281.8595 93.24982.82142.57382.39842.26222.15042.05541.97271.89921.8331 103.16932.76382.52752.35932.22812.12022.02831.94811.87681.8125 113.10582.71812.49072.32812.2012.09612.00671.92841.85881.7959 123.05452.6812.46072.30272.17882.07641.98891.91231.8441.7823 133.01232.65032.43582.28162.16042.061.97421.89891.83171.7709 142.97682.62452.41492.26382.14482.04621.96171.88751.82131.7613 152.94672.60252.3972.24852.13152.03431.95091.87771.81231.7531 162.92082.58352.38152.23542.11992.0241.94171.86931.80461.7459 172.89822.56692.36812.22382.10982.0151.93351.86191.79781.7396 182.87842.55242.35622.21372.10092.00711.92641.85531.79181.7341 192.86092.53952.34572.20472.09321.921.84951.78641.7291 202.84532.5282.33622.19672.0861.99371.91431.84431.78161.7247 212.83142.51762.32782.18942.07961.9881.90921.83971.77731.7207 222.81882.50832.32022.18292.07391.98291.90451.83541.77341.7171 232.80732.49992.31322.1772.06871.97831.90031.83161.76991.7139 242.7972.49222.30692.17152.06391.9741.89651.82811.76671.7109 252.78742.48512.30112.16662.05951.97011.89291.82481.76371.7081 262.77872.47862.29582.1622.05551.96651.88971.82191.7611.7056 272.77072.47272.29092.15782.05181.96321.88671.81911.75851.7033 282.76332.46712.28642.15392.04841.96011.88391.81661.75611.7011 292.75642.4622.28222.15032.04521.95731.88131.81421.7541.6991
Calculate the Standard Error of the Mean:
SEM = 8.4853 Calculate high end confidence interval total:High End = X + tscoreα * s/√n High End = 20 + 0 x 36/√18 High End = 20 + 0 x 8.4852813742386 High End = 20 + 0 High End = 20 Calculate low end confidence interval total:Low End = X - tscoreα * s/√n Low End = 20 - 0 x 36/√18 Low End = 20 - 0 x 8.4852813742386 Low End = 20 Final Answer20 < μ < 20
Related Calculators: Confidence Interval/Hypothesis Testing for the Difference of Means | Sample Size Requirement for the Difference of Means | Sample Size Reli
|