Solve the quadratic:
t2+10t-816 = 0
a = 1, b = 10, c = -816
t = | -b ± √b2 - 4ac |
2a |
-b = -(10)
-b = -10
Δ = b2 - 4ac:
Δ = 102 - 4 x 1 x -816
Δ = 100 - -3264
Δ = 3364 <--- Discriminant
Since Δ > 0, we expect two real roots.
√Δ = √(3364)
√Δ = 58
Numerator 1 = -b + √Δ
Numerator 1 = -10 + 58
Numerator 1 = 48
Numerator 2 = -b - √Δ
Numerator 2 = -10 - 58
Numerator 2 = -68
Denominator = 2 * a
Denominator = 2 * 1
Denominator = 2
Solution 1 = | Numerator 1 |
Denominator |
Solution 1 = | 48 |
2 |
Solution 1 = 24
Solution 2 = | Numerator 2 |
Denominator |
Solution 2 = | -68 |
2 |
Solution 2 = -34
(Solution 1, Solution 2) = (24, -34)
(24)2 + 10(24) - 816 ? 0
(576) + 240816 ? 0
576 + 240816 ? 0
0 = 0
(-34)2 + 10(-34) - 816 ? 0
(1156) - 340816 ? 0
1156 - 340816 ? 0
0 = 0