l Solve Quadratic Equation for w^2+3w-108=0

Enter Quadratic equation/inequality below

Hint Number =

Answer
(Solution 1, Solution 2) = (9, -12)

↓Steps Explained:↓



Solve the quadratic:

w2+3w-108 = 0

Set up the a, b, and c values:

a = 1, b = 3, c = -108

Quadratic Formula

w  =  -b ± √b2 - 4ac
  2a

Calculate -b

-b = -(3)

-b = -3

Calculate the discriminant Δ

Δ = b2 - 4ac:

Δ = 32 - 4 x 1 x -108

Δ = 9 - -432

Δ = 441 <--- Discriminant

Since Δ > 0, we expect two real roots.

Take the square root of Δ

Δ = √(441)

Δ = 21

-b + Δ:

Numerator 1 = -b + √Δ

Numerator 1 = -3 + 21

Numerator 1 = 18

-b - Δ:

Numerator 2 = -b - √Δ

Numerator 2 = -3 - 21

Numerator 2 = -24

Calculate 2a

Denominator = 2 * a

Denominator = 2 * 1

Denominator = 2

Find Solutions

Solution 1  =  Numerator 1
  Denominator

Solution 1 = 9

Solution 2

Solution 2  =  Numerator 2
  Denominator

Solution 2 = -12

Solution Set

(Solution 1, Solution 2) = (9, -12)

Prove our first answer

(9)2 + 3(9) - 108 ? 0

(81) + 27108 ? 0

81 + 27108 ? 0

0 = 0

Prove our second answer

(-12)2 + 3(-12) - 108 ? 0

(144) - 36108 ? 0

144 - 36108 ? 0

0 = 0

Final Answer

(Solution 1, Solution 2) = (9, -12)

Related Calculators:  Quartic Equations  |  3 Point Equation  |  Monomials
h