Enter quartic equation coefficients:

x4
x3
x2
= 0
Using the rational roots (rational zero) theorem:
Find roots for 3x4 + 6x3 - 123x2 - 126x + 1080
Rational roots of a polynomial will be q/p where
q is a factor of the constant term (1080)
and p is a factor of the leading x4 coefficient (3)

Determine our list of p values first:

Numbers (1 - 3)3 ÷ Number ListFactor of p?
13 ÷ 1 = 3Y
33 ÷ 3 = 1Y
Our factor list for p is {1,3}

Let's determine our list of q values next:

Numbers (1 - 1080)1080 ÷ Number ListFactor of q?
11080 ÷ 1 = 1080Y
21080 ÷ 2 = 540Y
31080 ÷ 3 = 360Y
41080 ÷ 4 = 270Y
51080 ÷ 5 = 216Y
61080 ÷ 6 = 180Y
81080 ÷ 8 = 135Y
91080 ÷ 9 = 120Y
101080 ÷ 10 = 108Y
121080 ÷ 12 = 90Y
151080 ÷ 15 = 72Y
181080 ÷ 18 = 60Y
201080 ÷ 20 = 54Y
241080 ÷ 24 = 45Y
271080 ÷ 27 = 40Y
301080 ÷ 30 = 36Y
361080 ÷ 36 = 30Y
401080 ÷ 40 = 27Y
451080 ÷ 45 = 24Y
541080 ÷ 54 = 20Y
601080 ÷ 60 = 18Y
721080 ÷ 72 = 15Y
901080 ÷ 90 = 12Y
1081080 ÷ 108 = 10Y
1201080 ÷ 120 = 9Y
1351080 ÷ 135 = 8Y
1801080 ÷ 180 = 6Y
2161080 ÷ 216 = 5Y
2701080 ÷ 270 = 4Y
3601080 ÷ 360 = 3Y
5401080 ÷ 540 = 2Y
10801080 ÷ 1080 = 1Y
Our factor list for q is {1,2,3,4,5,6,8,9,10,12,15,18,20,24,27,30,36,40,45,54,60,72,90,108,120,135,180,216,270,360,540,1080}

Calculate our q ÷ p = r values

pqr = q ÷ pƒ(r) = 3r4 + 6r3 - 123r2 - 126r + 1080ƒ(r) value-1 x rƒ(-r) = 3r4 + 6r3 - 123r2 - 126r + 1080ƒ(-r) value
1113(1)4 + 6(1)3 - 123(1)2 - 126(1) + 1080840-13(-1)4 + 6(-1)3 - 123(-1)2 - 126(-1) + 10801080
1223(2)4 + 6(2)3 - 123(2)2 - 126(2) + 1080432-23(-2)4 + 6(-2)3 - 123(-2)2 - 126(-2) + 1080840
1333(3)4 + 6(3)3 - 123(3)2 - 126(3) + 10800-33(-3)4 + 6(-3)3 - 123(-3)2 - 126(-3) + 1080432
1443(4)4 + 6(4)3 - 123(4)2 - 126(4) + 1080-240-43(-4)4 + 6(-4)3 - 123(-4)2 - 126(-4) + 10800
1553(5)4 + 6(5)3 - 123(5)2 - 126(5) + 10800-53(-5)4 + 6(-5)3 - 123(-5)2 - 126(-5) + 1080-240
1663(6)4 + 6(6)3 - 123(6)2 - 126(6) + 10801080-63(-6)4 + 6(-6)3 - 123(-6)2 - 126(-6) + 10800
1883(8)4 + 6(8)3 - 123(8)2 - 126(8) + 10807560-83(-8)4 + 6(-8)3 - 123(-8)2 - 126(-8) + 10803432
1993(9)4 + 6(9)3 - 123(9)2 - 126(9) + 108014040-93(-9)4 + 6(-9)3 - 123(-9)2 - 126(-9) + 10807560
110103(10)4 + 6(10)3 - 123(10)2 - 126(10) + 108023520-103(-10)4 + 6(-10)3 - 123(-10)2 - 126(-10) + 108014040
112123(12)4 + 6(12)3 - 123(12)2 - 126(12) + 108054432-123(-12)4 + 6(-12)3 - 123(-12)2 - 126(-12) + 108036720
115153(15)4 + 6(15)3 - 123(15)2 - 126(15) + 1080143640-153(-15)4 + 6(-15)3 - 123(-15)2 - 126(-15) + 1080106920
118183(18)4 + 6(18)3 - 123(18)2 - 126(18) + 1080308880-183(-18)4 + 6(-18)3 - 123(-18)2 - 126(-18) + 1080243432
120203(20)4 + 6(20)3 - 123(20)2 - 126(20) + 1080477360-203(-20)4 + 6(-20)3 - 123(-20)2 - 126(-20) + 1080386400
124243(24)4 + 6(24)3 - 123(24)2 - 126(24) + 10801005480-243(-24)4 + 6(-24)3 - 123(-24)2 - 126(-24) + 1080845640
127273(27)4 + 6(27)3 - 123(27)2 - 126(27) + 10801620432-273(-27)4 + 6(-27)3 - 123(-27)2 - 126(-27) + 10801391040
130303(30)4 + 6(30)3 - 123(30)2 - 126(30) + 10802478600-303(-30)4 + 6(-30)3 - 123(-30)2 - 126(-30) + 10802162160
136363(36)4 + 6(36)3 - 123(36)2 - 126(36) + 10805155920-363(-36)4 + 6(-36)3 - 123(-36)2 - 126(-36) + 10804605120
140403(40)4 + 6(40)3 - 123(40)2 - 126(40) + 10807863240-403(-40)4 + 6(-40)3 - 123(-40)2 - 126(-40) + 10807105320
145453(45)4 + 6(45)3 - 123(45)2 - 126(45) + 108012594960-453(-45)4 + 6(-45)3 - 123(-45)2 - 126(-45) + 108011512800
154543(54)4 + 6(54)3 - 123(54)2 - 126(54) + 108026089560-543(-54)4 + 6(-54)3 - 123(-54)2 - 126(-54) + 108024213600
160603(60)4 + 6(60)3 - 123(60)2 - 126(60) + 108039726720-603(-60)4 + 6(-60)3 - 123(-60)2 - 126(-60) + 108037149840
172723(72)4 + 6(72)3 - 123(72)2 - 126(72) + 108082215432-723(-72)4 + 6(-72)3 - 123(-72)2 - 126(-72) + 108077754600
190903(90)4 + 6(90)3 - 123(90)2 - 126(90) + 1080200197440-903(-90)4 + 6(-90)3 - 123(-90)2 - 126(-90) + 1080191472120
11081083(108)4 + 6(108)3 - 123(108)2 - 126(108) + 1080414257760-1083(-108)4 + 6(-108)3 - 123(-108)2 - 126(-108) + 1080399168432
11201203(120)4 + 6(120)3 - 123(120)2 - 126(120) + 1080630662760-1203(-120)4 + 6(-120)3 - 123(-120)2 - 126(-120) + 1080609957000
11351353(135)4 + 6(135)3 - 123(135)2 - 126(135) + 10801008956520-1353(-135)4 + 6(-135)3 - 123(-135)2 - 126(-135) + 1080979466040
11801803(180)4 + 6(180)3 - 123(180)2 - 126(180) + 10803180265200-1803(-180)4 + 6(-180)3 - 123(-180)2 - 126(-180) + 10803110326560
12162163(216)4 + 6(216)3 - 123(216)2 - 126(216) + 10806585048360-2163(-216)4 + 6(-216)3 - 123(-216)2 - 126(-216) + 10806464170440
12702703(270)4 + 6(270)3 - 123(270)2 - 126(270) + 108016052328360-2703(-270)4 + 6(-270)3 - 123(-270)2 - 126(-270) + 108015816200400
13603603(360)4 + 6(360)3 - 123(360)2 - 126(360) + 108050652430920-3603(-360)4 + 6(-360)3 - 123(-360)2 - 126(-360) + 108050092649640
15405403(540)4 + 6(540)3 - 123(540)2 - 126(540) + 1080256000530240-5403(-540)4 + 6(-540)3 - 123(-540)2 - 126(-540) + 1080254111098320
1108010803(1080)4 + 6(1080)3 - 123(1080)2 - 126(1080) + 10804088881549800-10803(-1080)4 + 6(-1080)3 - 123(-1080)2 - 126(-1080) + 10804073765277960
310.333333333(0.33333333)4 + 6(0.33333333)3 - 123(0.33333333)2 - 126(0.33333333) + 10801024.5925932778-0.333333333(-0.33333333)4 + 6(-0.33333333)3 - 123(-0.33333333)2 - 126(-0.33333333) + 10801108.1481480067
320.666666673(0.66666667)4 + 6(0.66666667)3 - 123(0.66666667)2 - 126(0.66666667) + 1080943.70370277556-0.666666673(-0.66666667)4 + 6(-0.66666667)3 - 123(-0.66666667)2 - 126(-0.66666667) + 10801108.1481480067
341.333333333(1.33333333)4 + 6(1.33333333)3 - 123(1.33333333)2 - 126(1.33333333) + 1080717.03703834889-1.333333333(-1.33333333)4 + 6(-1.33333333)3 - 123(-1.33333333)2 - 126(-1.33333333) + 10801024.5925932778
351.666666673(1.66666667)4 + 6(1.66666667)3 - 123(1.66666667)2 - 126(1.66666667) + 1080579.25925782444-1.666666673(-1.66666667)4 + 6(-1.66666667)3 - 123(-1.66666667)2 - 126(-1.66666667) + 1080943.70370277556
382.666666673(2.66666667)4 + 6(2.66666667)3 - 123(2.66666667)2 - 126(2.66666667) + 1080134.81481339333-2.666666673(-2.66666667)4 + 6(-2.66666667)3 - 123(-2.66666667)2 - 126(-2.66666667) + 1080579.25925782444
3103.333333333(3.33333333)4 + 6(3.33333333)3 - 123(3.33333333)2 - 126(3.33333333) + 1080-114.07407306889-3.333333333(-3.33333333)4 + 6(-3.33333333)3 - 123(-3.33333333)2 - 126(-3.33333333) + 1080281.48148298
3206.666666673(6.66666667)4 + 6(6.66666667)3 - 123(6.66666667)2 - 126(6.66666667) + 10802477.0370456689-6.666666673(-6.66666667)4 + 6(-6.66666667)3 - 123(-6.66666667)2 - 126(-6.66666667) + 1080601.48148562
34013.333333333(13.33333333)4 + 6(13.33333333)3 - 123(13.33333333)2 - 126(13.33333333) + 108086570.370276242-13.333333333(-13.33333333)4 + 6(-13.33333333)3 - 123(-13.33333333)2 - 126(-13.33333333) + 108061485.925852291

Real Roots → ƒ(r) = 0

Root List = {3,-4,5,-6}
These are the root(s) using direct substitution.
Below is a link using synthetic division
Click here to see the synthetic division for our polynomial using our root of 3
Click here to see the synthetic division for our polynomial using our root of -4
Click here to see the synthetic division for our polynomial using our root of 5
Click here to see the synthetic division for our polynomial using our root of -6