Solve the quartic equation
3x
4 + 6x
3 - 123x
2 - 126x + 1080 = 0
Divide the quartic by x
4 coefficient of 3
Our resulting equation is
x
4 + 2x
3 - 41x
2 - 42x + 360 = 0
where our new (a,b,c,d,e) coefficients become (1,2,-41,-42,360)
Calculate preliminary values
f = c - (⅜b
2)
f = -41 - ⅜(2)
2f = -41 - ⅜(4)
f = -41 + 1.5
f = -42.5
g = d + ⅜b
3 - ½bc
g = -42 + ⅜(2
3) - ½(2 * -41)
g = -42 + ⅜(8) - ½(-82)
g = -42 + 1 + 41
g = 0
h = e - (3b
4/256) + (b
2 * c)/16 - bd/4
h = 360 - (3(2
4)/256) + (2
2 * -41/16) - (2 * -42)/4
h = 360 - (3(16)/256) - 10.25 + 84/4
h = 360 - 0.1875 - 10.25 + 21
h = 370.5625
Form a cubic equation:
x
3 + ½fx
2 + ((f
2 - 4h)/16)x - g
2/64 = 0
Find the a, b, c, and d coefficients
Calculate the b coefficient:
b = ½f
b = ½(-42.5)
b = -21.25
Calculate the c coefficient:
c = | -42.52 - 4(370.5625) |
| 16 |
c = 20.25
Calculate the d coefficient:
d = 0
Solve the following cubic equation
x
3 - 21.25x
2 + 20.25x + 0 = 0
Calculate the discriminant Δ:
Δ = 4b
3d - b
2c
2 + 4ac
3 - 18abcd + 27a
2d
2Δ = (4)-21.25
3(0) - -21.25
220.25
2 + (4)(1)20.25
3 - 18(1)(-21.25)(20.25)(0) + (27)1
20
2Δ = -0 - 185168.84765625 + 33215.0625 - -0 + 0
Δ = -151953.78515625
Since Δ < 0:
The cubic equation has 3 real roots.
Calculate f:
f = | (3)(20.25)/1 - (-21.252)/(12) |
| 3 |
f = -130.27083333333
Calculate g:
g = | 2b3/a3 - 9bc2 + 27d/a |
| 27 |
g = | [(2)(-21.25313 - (9)(-21.25)20.252 + (27)(0)/1 |
| 27 |
g = | [(2)(-21.25313 - (9)(-21.25)20.252 + (27)(0)/1 |
| 27 |
g = | -19191.40625 - -3872.8125 + 0 |
| 27 |
g = -567.35532407407
Calculate h:
h = 80473.015938799 + -81879.995430987
h = -1406.9794921875
Calculate i:
i = Square Root(¼g
2 - h)
i = Square Root(¼(-567.35532407407
2) - -1406.9794921875)
i = √
80473.015938799 - -1406.9794921875 i = √
81879.995430987 i = 286.14680747998
Calculate j:
j = i
(1/3) j = 286.14680747998
(1/3) j = 6.5896594078231
Calculate k:
k = Arccosine(-g/(2i))
k = Arccosine(--567.35532407407/((2)286.14680747998))
k = Arccosine(0.99137105367454)
k = 0.13146394750086
Calculate l:
l = -j
l = -(6.5896594078231)
l = -6.5896594078231
Calculate m:
m = Cosine(k/3)
m = Cosine(0.13146394750086/3)
m = Cosine(0.04382131583362)
m = 0.99903999977871
Calculate n:
n = √
3 * Sin(k/3)
n = √
3 * Sin(0.13146394750086/3)
n = 1.7320508075689 * Sin(0.04382131583362)
n = 1.7320508075689 * 0.043807292111654
n = 0.075876455679396
Calculate p:
p = 7.0833333333333
Calculate the first root x1:
x
1 = 2j * Cosine(k/3) - b/(3a)
x
1 = (2)(6.5896594078231) * (Cosine(0.13146394750086/3) - -21.25/(3)(1)
x
1 = (13.179318815646)(Cosine(0.04382131583362) - -7.0833333333333
x
1 = 13.166666666667 - -7.0833333333333
x
1 = 20.25
Calculate the second root x2:
x
2 = l(m + n) + p
x
2 = -6.5896594078231(0.99903999977871 + 0.075876455679396) + 7.0833333333333
x
2 = -6.5896594078231(1.0749164554581) + 7.0833333333333
x
2 = -7.0833333333333 + 7.0833333333333
x
2 = -0
Calculate the third root x3:
x
3 = l(m - n) + p
x
3 = -6.5896594078231(0.99903999977871 - 0.075876455679396) + 7.0833333333333
x
3 = -6.5896594078231(0.92316354409931) + 7.0833333333333
x
3 = -6.0833333333333 + 7.0833333333333
x
3 = 1
You have found all 3 Real roots now.
(20.25, -0, 1)
Continue solving the quartic:
Calculate p and q
p = √
20.25p = 4.5
q = √
1q = 1
Calculate the r coefficient:
r = 0
Calculate the s coefficient:
s = 0.5
Now we have everything we need for our quartic equation roots:
x
1 = p + q + r - s
x
1 = 4.5 + 1 + 0 - 0.5
x
1 = 5
x
2 = p - q - r - s
x
2 = 4.5 - 1 - 0 - 0.5
x
2 = 3
x
3 = -p + q - r - s
x
3 = -4.5 + 1 - 0 - 0.5
x
3 = -4
x
4 = -p - q + r - s
x
4 = -4.5 - 1 + 0 - 0.5
x
4 = -6
(5, 3, -4, -6)
x
1 =
5x
2 =
3x
3 =
-4x
4 =
-6