A rectangle has width of 4 and perimeter of 28
Calculate the length and area
P = 2(l x w)
P = 2l + 2w
P - 2w = 2l
P - 2w | |
2 |
= |
2l |
2 |
l = | P - 2w |
2 |
l = | 28 - 2(4) |
2 |
l = | 28 - 8 |
2 |
l = | 20 |
2 |
l = 10
A = l x w
where l = length and w = width
Plug in l = 10 and w = 4
A = 10 x 4
A = 40
Diagonal = √l2 + w2
where l = length and w = width
Plug in l = 10 and w = 4
Diagonal = √102 + 42
Diagonal = √100 + 16
Diagonal = √116
Diagonal = 10.770329614269
R = | √l2 + w2 |
2 |
R = | √102 + 42 |
2 |
R = | √100 + 16 |
2 |
R = | √116 |
2 |
R = | 10.770329614269 |
2 |
R = 5.3851648071345
r = | 40 |
14 |
r = | lw |
l + w |
r = | (10)(4) |
10 + 4 |
r = | 40 |
14 |
r = 2.8571428571429
Faces = 1
Edges = 4
Vertices = 4