A rectangle has length of 505 and perimeter of 1520
Calculate the width and area
P = 2(l x w)
P = 2l + 2w
P - 2l = 2w
w = 255>
w = | P - 2l |
2 |
w = | 1520 - 2(505) |
2 |
w = | 1520 - 1010 |
2 |
w = | 510 |
2 |
A = l x w
where l = length and w = width
Plug in l = 505 and w = 255
A = 505 x 255
A = 128775
Diagonal = √l2 + w2
where l = length and w = width
Plug in l = 505 and w = 255
Diagonal = √5052 + 2552
Diagonal = √255025 + 65025
Diagonal = √320050
Diagonal = 565.72961739686
R = | √l2 + w2 |
2 |
R = | √5052 + 2552 |
2 |
R = | √255025 + 65025 |
2 |
R = | √320050 |
2 |
R = | 565.72961739686 |
2 |
R = 282.86480869843
r = | lw |
l + w |
r = | (505)(255) |
505 + 255 |
r = | 128775 |
760 |
r = 169.44078947368
Faces = 1
Edges = 4
Vertices = 4