3 is a factor of 18 true or false

3 is a factor of 18 true or false
We go to our math engine and type in [URL='https://www.mathcelebrity.com/factoriz.php?num=18&pl=Show+Factorization']factors of 18[/URL] and we see that 3 is a factor of 18, so our answer is [B]TRUE.[/B]

A adalah faktor dari 36 tetapi bukan kelipatan dari 4. Tentukan nilai a sebesar yang mungkin!

A adalah faktor dari 36 tetapi bukan kelipatan dari 4. Tentukan nilai a sebesar yang mungkin!
[URL='https://www.mathcelebrity.com/factoriz.php?num=36&pl=Show+Factorization']Kami memasukkan faktor 36 ke dalam enjin carian kami dan kami [/URL]mendapat:
{1, 2, 3, 4, 6, 9, 12, 18, 36}
Menyaring nombor yang bukan faktor 4, kami mendapat:
[B]A = {3, 6, 9, 18}[/B]

A computer randomly generates a whole number from 1 to 25. Find the probability that the computer ge

A computer randomly generates a whole number from 1 to 25. Find the probability that the computer generates a multiple of 5
[URL='https://www.mathcelebrity.com/factoriz.php?num=25&pl=Show+Factorization']Multiples of 5[/URL]:
{1, 5, 25}
So we have the probability of a random number multiple of 5 is
[B]3/25[/B]

A is the set of factors of 12

A is the set of factors of 12
Type in [URL='https://www.mathcelebrity.com/factoriz.php?num=12&pl=Show+Factorization']factor 12[/URL] into our math engine and we get:
A = {[B]1, 2, 3, 4, 6, 12[/B]}

A pair of numbers has an HCF (Highest Common Factor) of 3, and an LCM (Lowest Common Multiple) of

A pair of numbers has an HCF (Highest Common Factor) of 3, and an LCM (Lowest Common Multiple) of 45 . If one of the numbers in the pair is 15 , what is the other number?
[LIST=1]
[*]Prime Factorization for 15 is 3 * 5
[*]Prime Factorization for 9 is 3 * 3
[*]LCM of (9, 15) = 35
[/LIST]
[URL='https://www.mathcelebrity.com/gcflcm.php?num1=9&num2=15&num3=&pl=GCF+and+LCM']Check out this link here to see the details[/URL]

Alex says all factors of 16 are even why is she wrong

Alex says all factors of 16 are even why is she wrong.
[URL='https://www.mathcelebrity.com/factoriz.php?num=16&pl=Show+Factorization']Type in factor 16[/URL] into our search engine. We get the following factor of 16:
1, 2, 4, 8, 16
[B]All of these are even [I]except[/I] 1, which is odd. This is why Alex is wrong.[/B]

Besides 8 and 1, what is one factor of 8

Besides 8 and 1, what is one factor of 8.
Using our [URL='http://www.mathcelebrity.com/factoriz.php?num=8&pl=Show+Factorization']factor calculator[/URL], or entering the shortcut [B]Factor 8[/B], we get the following factors:
1, 2, 4, 8
Excluding 1 and 8, we have [B]2, 4[/B]

Factorization

Free Factorization Calculator - Given a positive integer, this calculates the following for that number:

1) Factor pairs and prime factorization and prime power decomposition

2) Factors and Proper Factors 3) Aliquot Sum

1) Factor pairs and prime factorization and prime power decomposition

2) Factors and Proper Factors 3) Aliquot Sum

Factors of 36 between 2 and 12

Factors of 36 between 2 and 12
We type in [I][URL='https://www.mathcelebrity.com/factoriz.php?num=36&pl=Show+Factorization']factors of 36[/URL][/I] into our search engine and we get:
{1, 2, 3, 4, 6, 9, 12, 18, 36}
The problem asks for factors of 36 between 2 and 12:
Between does not mean inclusive, so we have anything greater than 2 and less than 12:
[B]{3, 4, 6, 9}[/B]

Greatest Common Factor and Least Common Multiple

Free Greatest Common Factor and Least Common Multiple Calculator - Given 2 or 3 numbers, the calculator determines the following:

* Greatest Common Factor (GCF) using Factor Pairs

* Rewrite Sum using the Distributive Property and factoring out the GCF

* Least Common Multiple (LCM) / Least Common Denominator (LCD) using Factor Pairs

* GCF using the method of Successive Division

* GCF using the Prime Factorization method

* Determine if the numbers are coprime and twin prime

* Greatest Common Factor (GCF) using Factor Pairs

* Rewrite Sum using the Distributive Property and factoring out the GCF

* Least Common Multiple (LCM) / Least Common Denominator (LCD) using Factor Pairs

* GCF using the method of Successive Division

* GCF using the Prime Factorization method

* Determine if the numbers are coprime and twin prime

How many factors does 36 have

How many factors does 36 have
We can type in [URL='https://www.mathcelebrity.com/factoriz.php?num=36&pl=Show+Factorization']factor 36[/URL] into our math engine and we get:
{1, 2, 3, 4, 6, 9, 12, 18, 36}
1 * 36
2 * 18
3 * 12
4 * 9
6 * 6
This set contains [B]9 factors[/B].

Identify a pair of factors of -35 that has a sum of -2

Identify a pair of factors of -35 that has a sum of -2.
If we [URL='https://www.mathcelebrity.com/factoriz.php?num=-35&pl=Show+Factorization']type in [I]factor -35[/I] into our search engine[/URL], we see 4 factor pairs.
When we add up the factors for each pair, we see [B]7, -5[/B] added together gives us 2.

log5 = 0.699, log2 = 0.301. Use these values to evaluate log40

log5 = 0.699, log2 = 0.301. Use these values to evaluate log40.
One of the logarithmic identities is: log(ab) = log(a) + log(b). Using the numbers 2 and 5, we somehow need to get to 40.
[URL='http://www.mathcelebrity.com/factoriz.php?num=40&pl=Show+Factorization']List factors of 40[/URL].
On the link above, take a look at the bottom where it says prime factorization. We have:
40 = 2 x 2 x 2 x 5
Using our logarithmic identity, we have:
log40 = log(2 x 2 x 2 x 5)
Rewriting this using our identity, we have:
log40 = log2 + log2 + log2 + log5
log40 = 0.301 + 0.301 + 0.301 + 0.699
log40 = [B]1.602[/B]

natural numbers that are factors of 16

natural numbers that are factors of 16
Natural numbers are positive integers starting at 1.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
Of these, [URL='https://www.mathcelebrity.com/factoriz.php?num=16&pl=Show+Factorization']the only factors of 16[/URL] are:
{[B]1, 2, 4, 8, 16}[/B]

P is the natural numbers that are factors of 25

P is the natural numbers that are factors of 25
we type in [I][URL='https://www.mathcelebrity.com/factoriz.php?num=25&pl=Show+Factorization']factor 25[/URL][/I] into our math engine and we get:
{1, 5, 25}
Since [U]all[/U] of these are natural numbers, our answer is:
[B]{1, 5, 25}[/B]