median - the value separating the higher half from the lower half of a data sample,

A random sample of 25 customers was chosen in CCP MiniMart between 3:00 and 4:00 PM on a Friday afte

A random sample of 25 customers was chosen in CCP MiniMart between 3:00 and 4:00 PM on a Friday afternoon. The frequency distribution below shows the distribution for checkout time (in minutes).
Checkout Time (in minutes) | Frequency | Relative Frequency
1.0 - 1.9 | 2 | ?
2.0 - 2.9 | 8 | ?
3.0 - 3.9 | ? | ?
4.0 - 5.9 | 5 | ?
Total | 25 | ?
(a) Complete the frequency table with frequency and relative frequency.
(b) What percentage of the checkout times was less than 3 minutes?
(c)In what class interval must the median lie? Explain your answer.
(d) Assume that the largest observation in this dataset is 5.8. Suppose this observation were incorrectly recorded as 8.5 instead of 5.8. Will the mean increase, decrease, or remain the same? Will the median increase, decrease or remain the same? Why?
(a)
[B]Checkout Time (in minutes) | Frequency | Relative Frequency
1.0 - 1.9 | 2 | 2/25
2.0 - 2.9 | 8 | 8/25
3.0 - 3.9 | 10 (since 25 - 5 + 8 + 2) = 10 | 10/25
4.0 - 5.9 | 5 | 5/25
Total | 25 | ?[/B]
(b) (2 + 8)/25 = 10/25 = [B]40%[/B]
c) [B]3.0 - 3.9[/B] since 2 + 8 + 10 + 5 = 25 and 13 is the middle value which occurs in the 3.0 - 3.9 interval
(d) [B]Mean increases[/B] since it's a higher value than usual. Median would not change as the median is the most frequent distribution and assuming the 5.8 is only recorded once.

Basic Statistics

Free Basic Statistics Calculator - Given a number set, and an optional probability set, this calculates the following statistical items:

Expected Value

Mean = μ

Variance = σ^{2}

Standard Deviation = σ

Standard Error of the Mean

Skewness

Mid-Range

Average Deviation (Mean Absolute Deviation)

Median

Mode

Range

Pearsons Skewness Coefficients

Entropy

Upper Quartile (hinge) (75th Percentile)

Lower Quartile (hinge) (25th Percentile)

InnerQuartile Range

Inner Fences (Lower Inner Fence and Upper Inner Fence)

Outer Fences (Lower Outer Fence and Upper Outer Fence)

Suspect Outliers

Highly Suspect Outliers

Stem and Leaf Plot

Ranked Data Set

Central Tendency Items such as Harmonic Mean and Geometric Mean and Mid-Range

Root Mean Square

Weighted Average (Weighted Mean)

Frequency Distribution

Successive Ratio

Expected Value

Mean = μ

Variance = σ

Standard Deviation = σ

Standard Error of the Mean

Skewness

Mid-Range

Average Deviation (Mean Absolute Deviation)

Median

Mode

Range

Pearsons Skewness Coefficients

Entropy

Upper Quartile (hinge) (75th Percentile)

Lower Quartile (hinge) (25th Percentile)

InnerQuartile Range

Inner Fences (Lower Inner Fence and Upper Inner Fence)

Outer Fences (Lower Outer Fence and Upper Outer Fence)

Suspect Outliers

Highly Suspect Outliers

Stem and Leaf Plot

Ranked Data Set

Central Tendency Items such as Harmonic Mean and Geometric Mean and Mid-Range

Root Mean Square

Weighted Average (Weighted Mean)

Frequency Distribution

Successive Ratio

Construct a data set of seven temperature readings where the mean is positive and the median is nega

Construct a data set of seven temperature readings where the mean is positive and the median is negative.
[B]{-20,-10.-5,-2,-1,20,40}[/B]
[URL='https://www.mathcelebrity.com/statbasic.php?num1=-20%2C-10%2C-5%2C-2%2C-1%2C20%2C40&num2=+0.2%2C0.4%2C0.6%2C0.8%2C0.9&pl=Number+Set+Basics']Using our mean and median calculator[/URL], we see that:
[B]Mean = 3.142857 (positive)
Median = -2[/B]

Equilateral Triangle

Free Equilateral Triangle Calculator - Given a side (a), this calculates the following items of the equilateral triangle:

* Perimeter (P)

* Semi-Perimeter (s)

* Area (A)

* altitudes (h_{a},h_{b},h_{c})

* medians (m_{a},m_{b},m_{c})

* angle bisectors (t_{a},t_{b},t_{c})

* Circumscribed Circle Radius (R)

* Inscribed Circle Radius (r)

* Perimeter (P)

* Semi-Perimeter (s)

* Area (A)

* altitudes (h

* medians (m

* angle bisectors (t

* Circumscribed Circle Radius (R)

* Inscribed Circle Radius (r)

The patient recovery time from a particular surgical procedure is normally distributed with a mean o

The patient recovery time from a particular surgical
procedure is normally distributed with a mean of 5.3 days and a standard deviation of 2.1 days.
What is the median recovery time?
a. 2.7
b. 5.3
c. 7.4
d. 2.1
[B]b. 5.3 (mean, median, and mode are all the same in a normal distribution)[/B]

Which of the following is NOT TRUE about the distribution for averages?

Which of the following is NOT TRUE about the distribution for averages?
a. The mean, median, and mode are equal.
b. The area under the curve is one.
c. The curve never touches the x-axis.
d. The curve is skewed to the right.
Answer is d, the curve is skewed to the right
For a normal distribution:
[LIST]
[*] The area under the curve for a standard normal distribution equals 1
[*] Mean media mode are equal
[*] Never touches the x-axis since in theory, all events have some probability of occuring
[/LIST]