# trial  8 results

trial - a single performance of well-defined experiment

A binomial probability experient is conducted with the given parameters. Compute the probability of
A binomial probability experient is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment. n = 40, p = 0.05, x = 2 P(2) = Answer is [B]0.2777[/B]. Using Excel formula of =BINOMDIST(2,40,0.05,FALSE) or using our [URL='http://www.mathcelebrity.combinomial.php?n=+40&p=0.05&k=2&t=+5&pl=P%28X+%3D+k%29']binomial probability calculator[/URL]

Below are data showing the results of six subjects on a memory test. The three scores per subject ar
Below are data showing the results of six subjects on a memory test. The three scores per subject are their scores on three trials (a, b, and c) of a memory task. Are the subjects getting better each trial? Test the linear effect of trial for the data. A score trial B score trial 2 C Score trial 3 4 6 7 3 7 8 2 8 5 1 4 7 4 6 9 2 4 2 (a) Compute L for each subject using the contrast weights -1, 0, and 1. That is, compute (-1)(a) + (0)(b) + (1)(c) for each subject. (b) Compute a one-sample t-test on this column (with the L values for each subject) you created. Formula t = To computer a one-sample t-test first know the meaning of each letter (a) Each L column value is just -1(Column 1) + 0(Column2) + 1(Column 3) A score trial B score trial 2 C Score trial 3 L = (-1)(a) + (0)(b) + (1)(c) 4 6 7 3 3 7 8 5 2 8 5 3 1 4 7 6 4 6 9 5 2 4 2 0 (b) Mean = (3 + 5 + 3 + 6 + 5 + 0)/6 = 22/6 = 3.666666667 Standard Deviation = 2.160246899 Use 3 as our test mean (3.666667 - 3)/(2.160246899/sqrt(6)) = 0.755928946

Bernoulli Trials
Free Bernoulli Trials Calculator - Given a success probability p and a number of trials (n), this will simulate Bernoulli Trials and offer analysis using the Bernoulli Distribution. Also calculates the skewness, kurtosis, and entropy