Enter Word

Answer
Success!
Arrangements = 34,650

↓Steps Explained:↓

Find unique arrangements for

MISSISSIPPI

Calculate Number of Arrangements

Arrangements  =  M!
  N1!N2!...NM!

where M = letters in the word

and each Ni = dup letter occurrences

Calculate M

M = letters in the word

M = 11

Determine Duplicate Letters:

MISSISSIPPI:

P occurs 2 times, so N3 = 2

Plug in Values for Arrangements:

Arrangements  =  M!
  N1!N2!N3!

Arrangements  =  11!
  4!4!2!

Calculate 11!

11! = 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

11! = 39916800

Calculate 4!

4! = 4 x 3 x 2 x 1

4! = 24

Calculate 4!

4! = 4 x 3 x 2 x 1

4! = 24

Calculate 2!

2! = 2 x 1

2! = 2

Plug in values and simply

Arrangements  =  39,916,800
  (24)(24)(2)

Arrangements  =  39,916,800
  1,152

Final Answer

Arrangements = 34,650
Take the Quiz


Related Calculators:  Permutations and Combinations Operations  |  Multifactorials  |  Hypergeometric Distribution