## Enter cofunction statement below:

Find the cofunction of:

sin(90°)

## Show Related Cofunctions:

Trig FunctionCofunction
sincos
cossin
tancot
cscsec
seccsc
cottan

##### Cofunction Definition:

Trig measure for:
Angle complement: 90 - θ

##### Setup cofunction for sin(θ)

sin(θ) = cos(90° - θ)

##### Plug in θ = 45

sin(45) = cos(90° - 45)

sin(45) = cos(45)

sin(45) = cos(45)

#### You have 2 free calculationss remaining

sin(45) = cos(45)
##### How does the Cofunction Calculator work?
Free Cofunction Calculator - Calculates the cofunction of the 6 trig functions: * sin
* cos
* tan
* csc
* sec
* cot

This calculator has 1 input.

### What 7 formulas are used for the Cofunction Calculator?

sin(θ) = cos(90 - θ)
cos(θ) = sin(90 - θ)
tan(θ) = cot(90 - θ)
csc(θ) = sec(90 - θ)
sec(θ) = csc(90 - θ)
cot(θ) = tan(90 - θ)

For more math formulas, check out our Formula Dossier

### What 11 concepts are covered in the Cofunction Calculator?

angle
the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle.
cofunction
trigonometric identities that show the relationship between trigonometric ratios pairwise (sine and cosine, tangent and cotangent, secant and cosecant).
cofunction calculator
cos
cos(θ) is the ratio of the adjacent side of angle θ to the hypotenuse
cot
The length of the adjacent side divided by the length of the side opposite the angle. Also equals 1/tan(θ)
csc
the length of the hypotenuse divided by the length of the adjacent side. Also equals 1/sin(θ)
defined as one hundredth of the right angle. This is equal to π/200 or 9/10°
a unit of plane angular measurement that is equal to the angle at the center of a circle subtended by an arc whose length equals the radius or approximately 180°/π ~ 57.3 degrees.
sec
the length of the hypotenuse divided by the length of the adjacent side. Also equals 1/cos(θ)
sin
sin(θ) is the ratio of the opposite side of angle θ to the hypotenuse
tan
the ratio of the opposite side to the adjacent side of a particular angle of the right triangle.