*x*values and also for

*y*values.

__Grid E:__*x*variable11.92 34.86 26.72 24.50 38.93 8.59 29.31

23.39 24.13 30.05 21.54 35.97 7.48 35.97

__Grid H:__*y*variable27.86 13.29 33.03 44.31 16.58 42.43

39.61 25.51 39.14 16.58 47.13 14.70 57.47 34.44

According to Chebyshev's Theorem,

[1 - (1/k^2)] proportion of values will fall between Mean +/- (k*SD)

k in this case equal to z

z = (X-Mean)/SD

X = Mean + (z*SD)

1 - 1/k^2 = 0.75

- 1/k^2 = 0.75 - 1= - 0.25

1/k^2 = 0.25

k^2 = 1/0.25

k^2 = 4

k = 2

Therefore, z = k = 2

First, determine the mean and standard deviation of x

Mean(x) = 25.24

SD(x) = 9.7873

Required Interval for x is:

Mean - (z * SD) < X < Mean + (z * SD)

25.24 - (2 * 9.7873) < X < 25.24 - (2 * 9.7873)

25.24 - 19.5746 < X < 25.24 + 19.5746

5.6654 < X < 44.8146

Next, determine the mean and standard deviation of y

Mean(y) = 32.29

SD(y) = 9.7873

Required Interval for y is:

Mean - (z * SD) < Y < Mean + (z * SD)

32.29 - (2 * 13.1932) < Y < 32.29 - (2 * 13.1932)

32.29 - 26.3864 < Y < 32.29 + 26.3864

5.9036 < X < 58.6764