l
For set S = {2,4,6,8,10}, show:
Elements, cardinality, and power set
Elements = set objects
Use the ∈ symbol.
Cardinality = Number of set elements.
Since the set S contains 5 elements
|S| = 5
Power set = Set of all subsets of S
including S and ∅.
S contains 5 terms
Power Set contains 25 = 32 items
The subset A of a set B is
A set where all elements of A are in B.
# | Binary | Use if 1 | Subset |
---|---|---|---|
0 | 00000 | {} | |
1 | 00001 | {10} | |
2 | 00010 | {8} | |
3 | 00011 | {8,10} | |
4 | 00100 | {6} | |
5 | 00101 | {6,10} | |
6 | 00110 | {6,8} | |
7 | 00111 | {6,8,10} | |
8 | 01000 | {4} | |
9 | 01001 | {4,10} | |
10 | 01010 | {4,8} | |
11 | 01011 | {4,8,10} | |
12 | 01100 | {4,6} | |
13 | 01101 | {4,6,10} | |
14 | 01110 | {4,6,8} | |
15 | 01111 | {4,6,8,10} | |
16 | 10000 | 2, | {2} |
17 | 10001 | 2, | {2,10} |
18 | 10010 | 2, | {2,8} |
19 | 10011 | 2, | {2,8,10} |
20 | 10100 | 2, | {2,6} |
21 | 10101 | 2, | {2,6,10} |
22 | 10110 | 2, | {2,6,8} |
23 | 10111 | 2, | {2,6,8,10} |
24 | 11000 | 2,4, | {2,4} |
25 | 11001 | 2,4, | {2,4,10} |
26 | 11010 | 2,4, | {2,4,8} |
27 | 11011 | 2,4, | {2,4,8,10} |
28 | 11100 | 2,4,6, | {2,4,6} |
29 | 11101 | 2,4,6, | {2,4,6,10} |
30 | 11110 | 2,4,6,8, | {2,4,6,8} |
31 | 11111 | 2,4,6,8,10 | {2,4,6,8,10} |
{8,10},{2,4,6}
{8,10},{2,4,6}
{8,10},{2,4,6}
{6,10},
{6,10},
{6,10},
{6,8},
{6,8},
{6,8},
{6,8,10},{2,4}
{6,8,10},{2,4}
{4,10},{2,4,6}
{4,10},{2,4,6}
{4,10},{2,4,6}
{4,8},{2,4,6}
{4,8},{2,4,6}
{4,8},{2,4,6}
{4,8,10},
{4,8,10},
{4,6},
{4,6},
{4,6},
{4,6,10},
{4,6,10},
{4,6,8},
{4,6,8},
{4,6,8,10},{2}
{2,10},{2,4,6}
{2,10},{2,4,6}
{2,10},{2,4,6}
{2,8},{2,4,6}
{2,8},{2,4,6}
{2,8},{2,4,6}
{2,8,10},{2,4}
{2,8,10},{2,4}
{2,6},
{2,6},
{2,6},
{2,6,10},{2,4}
{2,6,10},{2,4}
{2,6,8},{2,4}
{2,6,8},{2,4}
{2,6,8,10},
{2,4},{2,4,6}
{2,4},{2,4,6}
{2,4},{2,4,6}
{2,4,10},
{2,4,10},
{2,4,8},
{2,4,8},
{2,4,8,10},
{2,4,6},
{2,4,6},
{2,4,6,10},
{2,4,6,8},
{{2},{4},{6},{8},{10})