number line - a line on which numbers are marked at intervals, used to order numbers. Smaller numbers are on the left and larger numbers are on the right.

A 100 point test contains a total of 20 questions. The multiple choice questions are worth 3 points

A 100 point test contains a total of 20 questions. The multiple choice questions are worth 3 points each and short response questions are worth 8 points each. Write a system of linear equations that represents this situation
Assumptions:
[LIST]
[*]Let m be the number of multiple choice questions
[*]Let s be the number of short response questions
[/LIST]
Since total points = points per problem * number of problems, we're given 2 equations:
[LIST=1]
[*][B]m + s = 20[/B]
[*][B]3m + 8s = 100[/B]
[/LIST]
We can solve this system of equations 3 ways:
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=m+%2B+s+%3D+20&term2=3m+%2B+8s+%3D+100&pl=Cramers+Method']Cramer's Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[B]m = 12, s = 8[/B]

A bakery sells 5800 muffins in 2010. The bakery sells 7420 muffins in 2015. Write a linear model tha

A bakery sells 5800 muffins in 2010. The bakery sells 7420 muffins in 2015. Write a linear model that represents the number y of muffins that the bakery sells x years after 2010.
Find the number of muffins sold after 2010 through 2015:
7,420 - 5,800 = 1,620
Now, since the problem states a linear sales model, we need to determine the sales per year:
1,620 muffins sold since 2010 / 5 years = 324 muffins per year.
Build our linear model:
[B]y = 5,800 + 324x
[/B]
Reading this out loud, we start with 5,800 muffins at the end of 2010, and we add 324 more muffins for each year after 2010.

A Bouquet of lillies and tulips has 12 flowers. Lillies cost $3 each, and tulips cost $2 each. The b

A Bouquet of lillies and tulips has 12 flowers. Lillies cost $3 each, and tulips cost $2 each. The bouquet costs $32. Write and solve a system of linear equations to find the number of lillies and tulips in the bouquet.
Let l be the number of lillies and t be the number of tulips. We're given 2 equations:
[LIST=1]
[*]l + t = 12
[*]3l + 2t = 32
[/LIST]
With this system of equations, we can solve it 3 ways.
[LIST]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Substitution']Substitution Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Elimination']Elimination Method[/URL]
[*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=l+%2B+t+%3D+12&term2=3l+%2B+2t+%3D+32&pl=Cramers+Method']Cramers Rule[/URL]
[/LIST]
No matter which method we choose, we get:
[LIST]
[*][B]l = 8[/B]
[*][B]t = 4[/B]
[/LIST]
[B]Now Check Your Work For Equation 1[/B]
l + t = 12
8 + 4 ? 12
12 = 12
[B]Now Check Your Work For Equation 2[/B]
3l + 2t = 32
3(8) + 2(4) ? 32
24 + 8 ? 32
32 = 32

A candlestick burns at a rate of 0.2 inches per hour. After eight straight hours of burning, the can

A candlestick burns at a rate of 0.2 inches per hour. After eight straight hours of burning, the candlestick is 13.4 inches tall. Write and solve a linear equation to find the original height of the candle.
Let h equal the number of hours the candlestick burns. We have a candlestick height equation of C.
C = 13.4 + 0.2(8) <-- We need to add back the 8 hours of candlestick burning
C = 13.4 + 1.6
C = [B]15 inches[/B]

A chest of treasure was hidden in the year 64 BC and found in 284 AD. For how long was the chest hid

A chest of treasure was hidden in the year 64 BC and found in 284 AD. For how long was the chest hidden
BC stands for Before Christ. Year 0 is when Christ was born. AD stands for After Death
On a number line, the point of Christ's birth is 0.
So BC is really negative
AD is positive
So we have:
284 - -64
284 + 64
[B]348 years[/B]

A company had sales of $19,808 million in 1999 and $28,858 million in 2007. Use the Midpoint Formula

A company had sales of $19,808 million in 1999 and $28,858 million in 2007. Use the Midpoint Formula to estimate the sales in 2003
2003 is the midpoint of 1999 and 2007, so we use our [URL='https://www.mathcelebrity.com/mptnline.php?ept1=19808&empt=&ept2=28858&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL] to get:
[B]24,333[/B] sales in 2003

A family buys airline tickets online. Each ticket costs $167. The family buys travel insurance with

A family buys airline tickets online. Each ticket costs $167. The family buys travel insurance with each ticket that costs $19 per ticket. The Web site charges a fee of $16 for the entire purchase. The family is charged a total of $1132. How many tickets did the family buy?
Let t be the number of tickets. We have the following equation with ticket price, insurance, and flat fee:
167t + 19t + 16 = 1132
Combine like terms:
186t + 16 = 1132
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=186t%2B16%3D1132&pl=Solve']equation calculator[/URL], we have:
[B]t = 6[/B]

a family went to a baseball game. the cost to park the car was $5 AND THE COST PER TICKET WAS $21. W

a family went to a baseball game. the cost to park the car was $5 AND THE COST PER TICKET WAS $21. WRITE A LINEAR FUNCTION IN THE FORM Y=MX+B, FOR THE TOTAL COST OF GOING TO THE BASEBALL GAME,Y, AND THE TOTAL NUMBER PEOPLE IN THE FAMILY,X.
We have:
[B]y = 21x + 5[/B]
Since the cost of each ticket is $21, we multiply this by x, the total number of people in the family.
We add 5 as the cost to park the car, which fits the entire family, and is a one time cost.

A group of campers have 250 pounds of food. They plan to eat 12 pounds a day. How many days will it

A group of campers have 250 pounds of food. They plan to eat 12 pounds a day. How many days will it take them to eat the food. Write your answer in a linear equation.
Let the number of days be d. We have the following equation:
12d = 250
To solve for d, we [URL='https://www.mathcelebrity.com/1unk.php?num=12d%3D250&pl=Solve']type this equation in our search engine[/URL] and we get:
d = [B]20.833[/B]

A house valued at 70,000 in 1989 increased in value to 125,000 in 2000. Find a function which gives

A house valued at 70,000 in 1989 increased in value to 125,000 in 2000. Find a function which gives the value of the house, v, as a function of y, the number of years after 1989.
Let's determine the years:
2000 - 1989 = 11
Let's determine the change in value:
125,000 - 70,000 = 55,000
Assuming a linear progression, we have:
55,000/11 = 5,000 per year increase
[B]y = 70,000 + 5,000v[/B] where v is the number of years after 1989
Plug in 11 to check our work
y = 70,000 + 5,000(11)
y = 70,000 + 55,000
y = 125,000

A is 0 and AR=19 what is the midpoint

A is 0 and AR=19 what is the midpoint
[URL='https://www.mathcelebrity.com/mptnline.php?ept1=0&empt=&ept2=19&pl=Calculate+missing+Number+Line+item']Using our midpoint calculator, with one point at 0, and the other point at 19[/URL], we get the midpoint M:
M = [B]19/2 or 9.5[/B]

A mother gives birth to a 10 pound baby. Every 2 months, the baby gains 5 pounds. If x is the age o

A mother gives birth to a 10 pound baby. Every 2 months, the baby gains 5 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx + b that describes the baby's weight.
If the baby gains 5 pounds every 2 months, then they gain 5/2 = 2.5 pounds per month. Let x be the number of months old for the baby, we have:
The baby starts at 10 pounds. And every month (x), the baby's weight increases 2.5 pounds. Our equation is:
[B]y = 2.5x + 10[/B]

A mother gives birth to a 6 pound baby. Every 4 months, the baby gains 4 pounds. If x is the age of

A mother gives birth to a 6 pound baby. Every 4 months, the baby gains 4 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx b that describes the baby's weight.
The baby gains 4 pounds every month, where x is the number of months since birth. The baby boy starts life (time 0) at 6 pounds. So we have
[B]y = 4x + 6[/B]

A mother gives birth to a 7 pound baby. Every 3 months, the baby gains 2 pounds. If x is the age of

A mother gives birth to a 7 pound baby. Every 3 months, the baby gains 2 pounds. If x is the age of the baby in months, then y is the weight of the baby in pounds. Find an equation of a line in the form y = mx + b that describes the baby's weight.
Every month, the baby gains 2/3 of a pound. So we have:
[B]y = 2/3x + 7
[/B]
The baby starts off with 7 pounds. So we add 7 pounds + 2/3 times the number of months passed since birth.

A music app charges $2 to download the app plus $1.29 per song download. Write and solve a linear eq

A music app charges $2 to download the app plus $1.29 per song download. Write and solve a linear equation to find the total cost to download 30 songs
Set up the cost function C(s) where s is the number of songs:
C(s) = cost per song * s + download fee
Plugging in our numbers for s = 30 and a download fee of $2 and s = 1.29, we have:
C(30) = 1.29(30) + 2
C(30) = 38.7 + 2
C(30) = [B]40.7[/B]

A music app charges $2 to download the app plus $1.29 per song downloaded. Write and solve a linear

A music app charges $2 to download the app plus $1.29 per song downloaded. Write and solve a linear equation to find the total cost to download 30 songs.
Let the number of songs be s. And the cost function be C(s). We have:
C(s) = Price per song downloaded * s + app download charge
C(s) = 1.29s + 2
The problem asks for C(30):
C(3) = 1.29(30) + 2
C(3) = 38.7 +2
C(3) = $[B]40.7[/B]

a music app charges $5 to download the app plus $1.25 per song downloaded. write linear equation to

a music app charges $5 to download the app plus $1.25 per song downloaded. write linear equation to calculate the cost for x number of songs
With x songs, our Cost equation C(x) is:
C(x) = cost per download * x downloads + app download fee
[B]C(x) = 1.25x + 5[/B]

A music app charges 2$ to download the app plus 1.29$ per song download. Write and solve linear equa

A music app charges 2$ to download the app plus 1.29$ per song download. Write and solve linear equation and a linear equation to find the total cost to download 30 songs
Set up the equation C(d) where d is the number of downloads:
C(d) = cost per download * d + download fee
Plugging in our numbers, we get:
C(d) = 1.29d + 2
The problem asks for C(30):
C(30) = 1.29(30) + 2
C(30) = 38.7 + 2
C(30) = [B]40.70[/B]

A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is

A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is the slope of the line that represents the number of tests on the y-axis and the time in weeks on the x-axis?
Slope is y/x,so we have 27/36.
[URL='https://www.mathcelebrity.com/fraction.php?frac1=27%2F36&frac2=3%2F8&pl=Simplify']Using our fraction simplifier[/URL], we can reduce 27/36 to 3/4. So this is our slope.
[B]3/4[/B]

A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is

A school conducts 27 tests in 36 weeks. Assume the school conducts tests at a constant rate. What is the slope of the line that represents the number of tests on the y-axis and the time in weeks on the x-axis?
Slope = Rise/Run or y/x
Since tests are on the y-axis and time is on the x-axis, we have:
Slope = 27/36
We can simplify this, so we [URL='https://www.mathcelebrity.com/fraction.php?frac1=27%2F36&frac2=3%2F8&pl=Simplify']type in 27/36 into our search engine[/URL], and get:
[B]Slope = 3/4[/B]

A segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the othe

A segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the other endpoint?
The other endpoint is (8,1) using our [URL='http://www.mathcelebrity.com/mptnline.php?ept1=2&empt=5&ept2=&pl=Calculate+missing+Number+Line+item']midpoint calculator.[/URL]

Carly has already written 35 of a novel. She plans to write 12 additional pages per month until she

Carly has already written 35 of a novel. She plans to write 12 additional pages per month until she is finished. Write and solve a linear equation to find the total number of pages written at 5 months.
Let m be the number of months. We have the pages written function P(m) as:
P(m) = 12m + 35
The problem asks for P(5):
P(5) = 12(5) + 35
P(5) = 60 + 35
P(5) = [B]95[/B]

Carly has already written 35 pages of a novel. She plans to write 12 additional pages per month unti

Carly has already written 35 pages of a novel. She plans to write 12 additional pages per month until she is finished. Write and solve a linear equation to find the total number of pages written at 5 months.
Set up the equation where m is the number of months:
pages per month * m + pages written already
12m + 35
The problems asks for m = 5:
12(5) + 35
60 + 35
[B]95 pages[/B]

Complex Number Operations

Free Complex Number Operations Calculator - Given two numbers in complex number notation, this calculator:

1) Adds (complex number addition), Subtracts (complex number subtraction), Multiplies (complex number multiplication), or Divides (complex number division) any 2 complex numbers in the form a + bi and c + di where i = √-1.

2) Determines the Square Root of a complex number denoted as √a + bi

3) Absolute Value of a Complex Number |a + bi|

4) Conjugate of a complex number a + bi

1) Adds (complex number addition), Subtracts (complex number subtraction), Multiplies (complex number multiplication), or Divides (complex number division) any 2 complex numbers in the form a + bi and c + di where i = √-1.

2) Determines the Square Root of a complex number denoted as √a + bi

3) Absolute Value of a Complex Number |a + bi|

4) Conjugate of a complex number a + bi

Compound Interest and Annuity Table

Free Compound Interest and Annuity Table Calculator - Given an interest rate (i), number of periods to display (n), and number of digits to round (r), this calculator produces a compound interest table. It shows the values for the following 4 compound interest annuity functions from time 1 to (n) rounded to (r) digits:

v^{n}

d

(1 + i)^{n}

a_{n|}

s_{n|}

ä_{n|i}

s_{n|i}

Force of Interest δ^{n}

v

d

(1 + i)

a

s

ä

s

Force of Interest δ

Counting on a Number Line

Free Counting on a Number Line Calculator - Shows addition or subtraction by moving left or right on a number line.

distance between -2 and 9 on the number line

distance between -2 and 9 on the number line
Distance on the number line is the absolute value of the difference:
D = |9 - -2|
D = |11|
D = [B]11[/B]

find the difference between a mountain with an altitude of 1,684 feet above sea level and a valley

find the difference between a mountain with an altitude of 1,684 feet above sea level and a valley 216 feet below sea level.
Below sea level is the same as being on the opposite side of zero on the number line. To get the difference, we do the following:
1,684 - (-216)
Since subtracting a negative is a positive, we have:
1,684 + 216
[B]1,900 feet[/B]

Frank is a plumber who charges a $35 service charge and $15 per hour for his plumbing services. Find

Frank is a plumber who charges a $35 service charge and $15 per hour for his plumbing services. Find a linear function that expresses the total cost C for plumbing services for h hours.
Cost functions include a flat rate and a variable rate. The flat rate is $35 and the variable rate per hour is 15. The cost function C(h) where h is the number of hours Frank works is:
[B]C(h) = 15h + 35[/B]

Imaginary Numbers

Free Imaginary Numbers Calculator - Calculates the imaginary number i where i = √-1 raised to any integer power as well as the product of imaginary numbers of quotient of imaginary numbers

In 2010 a algebra book cost $125. In 2015 the book cost $205. Whats the linear function since 2010?

In 2010 a algebra book cost $125. In 2015 the book cost $205. Whats the linear function since 2010?
In 5 years, the book appreciated 205 - 125 = 80 in value.
80/5 = 16.
So each year, the book increases 16 in value. Set up the cost function:
[B]C(y) = 16y where y is the number of years since 2010[/B]

Jayden spent $46.20 on 12 galllons of gasoline. What was the price per gallon?

Jayden spent $46.20 on 12 galllons of gasoline. What was the price per gallon?
Price per gallon = Total spend / number of gallons
Price per gallon = $46.20/12
Price per gallon = $[B]3.85[/B]

Jazmin is a hairdresser who rents a station in a salon for daily fee. The amount of money (m) Jazmin

Jazmin is a hairdresser who rents a station in a salon for daily fee. The amount of money (m) Jazmin makes from any number of haircuts (n) a day is described by the linear function m = 45n - 30
A) A haircut costs $30, and the station rent is $45
B) A haircut costs $45, and the station rent is $30.
C) Jazmin must do 30 haircuts to pay the $45 rental fee.
D) Jazmin deducts $30 from each $45 haircut for the station rent.
[B]Answer B, since rent is only due once. Profit is Revenue - Cost[/B]

Joel bought 88 books. Some books cost $13 each and some cost $17 each. In all, he spent $128. Which

Joel bought 88 books. Some books cost $13 each and some cost $17 each. In all, he spent $128. Which system of linear equations represents the given situation?
Let a be the number of the $13 book, and b equal the number of $17 books. We have the following system of linear equations:
[LIST=1]
[*][B]a + b = 88[/B]
[*][B]13a + 17b = 128[/B]
[/LIST]
To solve this system, use our calculator for the following methods:
[LIST]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Substitution']Substitution[/URL]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Elimination']Elimination[/URL]
[*][URL='http://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+b+%3D+88&term2=13a+%2B+17b+%3D+128&pl=Cramers+Method']Cramers Method[/URL]
[/LIST]

Julius Caesar was born and 100 BC and was 66 years old when he died in which year did he die?

Julius Caesar was born and 100 BC and was 66 years old when he died in which year did he die?
BC means "Before Christ". On a timeline, it represents a negative number, where year 0 is the birth of Christ. So we have -100 + 66 = -34
-34 means [B]34 BC[/B].

kim and jason just had business cards made. kim’s printing company charged a one time setup fee of $

kim and jason just had business cards made. kim’s printing company charged a one time setup fee of $8 and then $20 per box of cards. jason,meanwhile ordered his online. they cost $8 per box. there was no setup fee, but he had to pay $20 to have his order shipped to his house. by coincidence, kim and jason ended up spending the same amount on their business cards. how many boxes did each buy? how much did each spend?
Set up Kim's cost function C(b) where b is the number of boxes:
C(b) = Cost per box * number of cards + Setup Fee + Shipping Fee
C(b) = 20c + 8 + 0
Set up Jason's cost function C(b) where b is the number of boxes:
C(b) = Cost per box * number of cards + Setup Fee + Shipping Fee
C(b) = 8c + 0 + 20
Since Kim and Jason spent the same amount, set both cost equations equal to each other:
20c + 8 = 8c + 20
[URL='https://www.mathcelebrity.com/1unk.php?num=20c%2B8%3D8c%2B20&pl=Solve']Type this equation into our search engine[/URL] to solve for c, and we get:
c = 1
How much did they spend? We pick either Kim's or Jason's cost equation since they spent the same, and plug in c = 1:
Kim:
C(1) = 20(1) + 8
C(1) = 20 + 8
C(1) = [B]28
[/B]
Jason:
C(1) = 8(1) + 20
C(1) = 8 + 20
C(1) = [B]28[/B]

Lebron James scored 288 points in 9 games this season. Assuming he continues to score at this consta

Lebron James scored 288 points in 9 games this season. Assuming he continues to score at this constant rate, write a linear equation that represents the scenario.
288 points / 9 games = 32 points per game
Let g be the number of games Lebron plays. We build an equation for his season score:
Lebron's Season Score = Points per game * number of games
Lebron's Season Score = [B]32g[/B]

Linear Congruential Generator

Free Linear Congruential Generator Calculator - Using the linear congruential generator algorithm, this generates a list of random numbers based on your inputs

Number Line

Free Number Line Calculator - Counts from a point going left and right on a number line

Number Line Midpoint

Free Number Line Midpoint Calculator - Calculates a midpoint between 2 points on a number line or finds the second endpoint if one endpoint and midpoint are given.

Point P is located at -15 and point Q is located at 6 on a number line. Which value would represent

Point P is located at -15 and point Q is located at 6 on a number line. Which value would represent point T, the midpoint of PQ?
Using our [URL='https://www.mathcelebrity.com/mptnline.php?ept1=-15&empt=&ept2=6&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL], we get:
T = [B]-4.5[/B]

Represent the number of inches in 7 feet

Represent the number of inches in 7 feet
We [URL='https://www.mathcelebrity.com/linearcon.php?quant=7&pl=Calculate&type=foot']type in 7 feet to our search engine and we get[/URL]:
7 feet = [B]84 inches[/B]

Sarah starts with $300 in her savings account. She babysits and earns $30 a week to add to her accou

Sarah starts with $300 in her savings account. She babysits and earns $30 a week to add to her account. Write a linear equation to model this situation? Enter your answer in y=mx b form with no spaces.
Let x be the number of hours Sarah baby sits. Then her account value y is:
y = [B]30x + 300[/B]

slope is 0 and whose y-intercept is 9.

slope is 0 and whose y-intercept is 9.
The standard line equation is y = mx + b where m is the slope and b is the y-intercept is b.
Plugging in our numbers, we get:
y = 0x + 9
y = [B]9[/B]

Square Roots and Exponents

Free Square Roots and Exponents Calculator - Given a number (n), or a fraction (n/m), and/or an exponent (x), or product of up to 5 radicals, this determines the following:

* The square root of n denoted as √n

* The square root of the fraction n/m denoted as √n/m

* n raised to the x^{th} power denoted as n^{x} (Write without exponents)

* n raised to the x^{th} power raised to the yth power denoted as (n^{x})^{y} (Write without exponents)

* Product of up to 5 square roots: √a√b√c√d√e

* Write a numeric expression such as 8x8x8x8x8 in exponential form

* The square root of n denoted as √n

* The square root of the fraction n/m denoted as √n/m

* n raised to the x

* n raised to the x

* Product of up to 5 square roots: √a√b√c√d√e

* Write a numeric expression such as 8x8x8x8x8 in exponential form

Suppose that J and K are on the number line. If JK=9 and J lies at 4 where could K be located?

Suppose that J and K are on the number line. If JK=9 and J lies at 4 where could K be located?
We'd need 9 spaces to the right of 4 or 9 spaces to the left of 4 to have JK be 9.
To the right:
K = 4 + 9
K = [B]13[/B]
K = 4 - 9
K = [B]-5[/B]

Suppose that the weight (in pounds) of an airplane is a linear function of the amount of fuel (in ga

Suppose that the weight (in pounds) of an airplane is a linear function of the amount of fuel (in gallons) in its tank. When carrying 20 gallons of fuel, the airplane weighs 2012 pounds. When carrying 55 gallons of fuel, it weighs 2208 pounds. How much does the airplane weigh if it is carrying 65 gallons of fuel?
Linear functions are written in the form of one dependent variable and one independent variable. Using g as the number of gallons and W(g) as the weight, we have:
W(g) = gx + c where c is a constant
We are given:
[LIST]
[*]W(20) = 2012
[*]W(55) = 2208
[/LIST]
We want to know W(65)
Using our givens, we have:
W(20) = 20x + c = 2012
W(55) = 55x + c = 2208
Rearranging both equations, we have:
c = 2012 - 20x
c = 2208 - 55x
Set them both equal to each other:
2012 - 20x = 2208 - 55x
Add 55x to each side:
35x + 2012 = 2208
Using our [URL='http://www.mathcelebrity.com/1unk.php?num=35x%2B2012%3D2208&pl=Solve']equation solver[/URL], we see that x is 5.6
Plugging x = 5.6 back into the first equation, we get:
c = 2012 - 20(5.6)
c = 2012 - 112
c = 2900
Now that we have all our pieces, find W(65)
W(65) = 65(5.6) + 2900
W(65) = 264 + 2900
W(65) = [B]3264[/B]

the equation of a line is y = mx + 4. find m if the line passes through (-5,0)

the equation of a line is y = mx + 4. find m if the line passes through (-5,0)
Plug in our numbers of x = -5, and y = 0:
-5m + 4 = 0
To solve for m, we [URL='https://www.mathcelebrity.com/1unk.php?num=-5m%2B4%3D0&pl=Solve']plug in this equation into our search engine[/URL] and we get:
[B]m = 0.8 or 4/5[/B]
so our line equation becomes:
[B]y = 4/5x + 4[/B]

The points -5, -24 and 5,r lie on a line with slope 4. Find the missing coordinate r. Slope = (y2 -

The points -5, -24 and 5,r lie on a line with slope 4. Find the missing coordinate r.
Slope = (y2 - y1)/(x2 - x1)
Plugging in our numbers, we get:
4 = (r - -24)/(5 - -5)
4 = (r +24)/10
Cross multiply:
r + 24 = 40
Subtract 24 from each side:
[B]r = 16[/B]

The points 6,4 and 9,r lie on a line with slope 3. Find the missing coordinate r.

The points 6,4 and 9,r lie on a line with slope 3. Find the missing coordinate r.
Slope = (y2 - y1)/(x2 - x1)
Plugging in our numbers, we get:
3 = (r - 4)/(9 - 6)
3 = (r - 4)/3
Cross multiply:
r - 4 = 9
Add 4 to each side:
[B]r = 13[/B]

There were 286,200 graphic designer jobs in a country in 2010. It has been projected that there will

There were 286,200 graphic designer jobs in a country in 2010. It has been projected that there will be 312,500 graphic designer jobs in 2020. (a) Using the data, find the number of graphic designer jobs as a linear function of the year.
[B][U]Figure out the linear change from 2010 to 2020[/U][/B]
Number of years = 2020 - 2010
Number of years = 10
[B][U]Figure out the number of graphic designer job increases:[/U][/B]
Number of graphic designer job increases = 312,500 - 286,200
Number of graphic designer job increases = 26,300
[B][U]Figure out the number of graphic designer jobs added per year[/U][/B]
Graphic designer jobs added per year = Total Number of Graphic Designer jobs added / Number of Years
Graphic designer jobs added per year = 26,300 / 10
Graphic designer jobs added per year = 2,630
[U][B]Build the linear function for graphic designer jobs G(y) where y is the year:[/B][/U]
G(y) = 286,200 + 2,630(y - 2010)
[B][U]Multiply through and simplify:[/U][/B]
G(y) = 286,200 + 2,630(y - 2010)
G(y) = 286,200 + 2,630y - 5,286,300
[B]G(y) = 2,630y - 5,000,100[/B]

Using a number line how far is - 2 from 6

Using a number line how far is - 2 from 6
We use [URL='https://www.mathcelebrity.com/mptnline.php?ept1=-2&empt=+&ept2=6&pl=Calculate+missing+Number+Line+item']our number line calculator[/URL] and we get:
Distance is [B]8[/B]

Walking Distance (Pedometer)

Free Walking Distance (Pedometer) Calculator - Given a number of steps and a distance per stride in feet, this calculator will determine how far you walk in other linear measurements.

What number is half between 1.24 and 1.8?

What number is half between 1.24 and 1.8?
Halfway between two points is called the midpoint.
Using out [URL='http://www.mathcelebrity.com/mptnline.php?ept1=1.24&empt=&ept2=1.8&pl=Calculate+missing+Number+Line+item']midpoint calculator[/URL], we get 1.52:

which number is the same distance from 0 on the number line as 4

which number is the same distance from 0 on the number line as 4
We use absolute value for distance.
Since 4 is 4 units right of 0 on the number line, we can also move 4 units left of 0 on the number line and we land on [B]-4[/B]

you start at a point on the number line and move 4 units left. If you are now at 10, then what was y

you start at a point on the number line and move 4 units left. If you are now at 10, then what was your original point?
Work backwards. If we're at 10, and we moved left, this means we add 4 to get back to our starting point:
10 + 4 = [B]14[/B]