circle - the set of all points in the plane that are a fixed distance from a fixed point

(3,3) radius of 4

(3,3) radius of 4
We have a circle with center (3,3) with a radius of 4.
[URL='https://www.mathcelebrity.com/eqcircle.php?h=3&k=3&r=4&calc=1&d1=-1&d2=2&d3=3&d4=2&ceq=%28x+%2B+3%29%5E2+%2B+%28y+-+2%29%5E2+%3D+16&pl=Calculate']Use our circle equation calculator to get the general form and standard form.[/URL]

3/10 of a circle equal how many degrees

3/10 of a circle equal how many degrees
A circle is 365 degrees. So [URL='https://www.mathcelebrity.com/fraction.php?frac1=365&frac2=3%2F10&pl=Multiply']we multiply 365 * 3/10 in our search engine[/URL] and get:
219/2
219/2 = [B]109.5 degrees[/B]

5/12 of a circle what measure in degrees

5/12 of a circle what measure in degrees
A circle measures 360 degrees. We [URL='https://www.mathcelebrity.com/fraction.php?frac1=5%2F12&frac2=360&pl=Multiply']multiply as follows[/URL]:
5/12 * 360 = [B]150 degrees[/B]

A bicycle wheel is one meter around. If the spikes are 4 centimeters apart, how many spokes are on t

A bicycle wheel is one meter around. If the spikes are 4 centimeters apart, how many spokes are on the wheel altogether?
1 meter = 100 cm per our [URL='https://www.mathcelebrity.com/linearcon.php?quant=1&pl=Calculate&type=meter']conversions calculator[/URL]
100 cm for the whole circle / 4 cm for each spike = [B]25 spikes[/B]

A circle has a center at (6, 2) and passes through (9, 6)

A circle has a center at (6, 2) and passes through (9, 6)
The radius (r) is found by [URL='https://www.mathcelebrity.com/slope.php?xone=6&yone=2&slope=+2%2F5&xtwo=9&ytwo=6&pl=You+entered+2+points']using the distance formula[/URL] to get:
r = 5
And the equation of the circle is found by using the center (h, k) and radius r as:
(x - h)^2 + (y - k)^2 = r^2
(x - 6)^2 + (y - 2)^2 = 5^2
[B](x - 6)^2 + (y - 2)^2 = 25[/B]

A dog on a 20-foot long leash is tied to the middle of a fence that is 100 feet long. The dog ruined

A dog on a 20-foot long leash is tied to the middle of a fence that is 100 feet long. The dog ruined the grass wherever it could reach. What is the area of the grass that the dog ruined.
The leash forms a circle where the dog can get to.
A = pi(r)^2
A = 3.1415(20)^2
A = 3.1415 * 400
A = 1256 square feet
The fence blocks off half the circle where the dog can move to, so we have a half-circle area:
A = 1256/2
A = [B]628 square feet[/B]

A gardener wants to fence a circular garden of diameter 21cm. Find the length of the rope he needs t

A gardener wants to fence a circular garden of diameter 21cm. Find the length of the rope he needs to purchase, if he makes 2round of fence Also find the cost of the rope, if it costs Rs4 per meter (take pie as 22/7)
Circumference of a circle = Pi(d).
Given Pi = 22/7 for this problem, we have:
C = 22/7(21)
C = 22*3
[B]C = 66[/B]

A new company president is said to have caused the company "to do a 180." Before the new president,

A new company president is said to have caused the company "to do a 180." Before the new president, the company was losing money. What is the company most likely doing under the new president?
A 180 is a completely different direction. Since 180 degrees means the other way, a half-circle, a switch in direction.
This means if the company was losing money, after doing a "180", they're making money.

a painter is painting a circular sculpture. The sculpture has a radius of 5 meters. How much paint s

a painter is painting a circular sculpture. The sculpture has a radius of 5 meters. How much paint should she use to paint the sculpture
Area of a circle (A) is:
A = ?r²
Substituting r = 5 into this formula, we get:
A = ? * 5²
A = [B]25?[/B]

A tractor tire has a radius of 24 inches. If the tire rotates one time around, about how many inches

A tractor tire has a radius of 24 inches. If the tire rotates one time around, about how many inches of ground will it cover? Use 3.14 for pi.
A tractor tire is a circle. We want the circumference, which is the distance around the tire.
C = 2pir
C = 2(3.1415)24
[B]C ~ 150.8[/B]

Annulus

Free Annulus Calculator - Calculates the area of an annulus and the equation of the annulus using the radius of the large and small concentric circles.

Arc Length and Area of a Sector of a Circle

Free Arc Length and Area of a Sector of a Circle Calculator - Calculates the arc length of a circle and the area of the sector of a circle

center (3, -2), radius = 4

center (3, -2), radius = 4
To see the general form or standard form, you can check out this link:
[URL='http://Circle Equations']https://www.mathcelebrity.com/eqcircle.php?h=3&k=-2&r=4&d1=1&d2=1&d3=2&d4=4&calc=1&ceq=&pl=Calculate[/URL]

Chord

Free Chord Calculator - Solves for any of the 3 items in the Chord of a Circle equation, Chord Length (c), Radius (r), and center to chord midpoint (t).

Circle Equation

Free Circle Equation Calculator - This calculates the standard equation of a circle and general equation of a circle from the following given items:

* A center (h,k) and a radius r

* A diameter A(a_{1},a_{2}) and B(b_{1},b_{2})

This also allows you to enter a standard or general form equation so that the center (h,k) and radius r can be determined.

* A center (h,k) and a radius r

* A diameter A(a

This also allows you to enter a standard or general form equation so that the center (h,k) and radius r can be determined.

Circles

Free Circles Calculator - Calculates and solves for Radius, Diameter, Circumference, and Area of a Circle.

Circular Permutation

Free Circular Permutation Calculator - Calculates the following:

Number of ways to arrange n distinct items arranged on a circle

Number of ways to arrange n distinct items arranged on a circle

Equilateral Triangle

Free Equilateral Triangle Calculator - Given a side (a), this calculates the following items of the equilateral triangle:

* Perimeter (P)

* Semi-Perimeter (s)

* Area (A)

* altitudes (h_{a},h_{b},h_{c})

* medians (m_{a},m_{b},m_{c})

* angle bisectors (t_{a},t_{b},t_{c})

* Circumscribed Circle Radius (R)

* Inscribed Circle Radius (r)

* Perimeter (P)

* Semi-Perimeter (s)

* Area (A)

* altitudes (h

* medians (m

* angle bisectors (t

* Circumscribed Circle Radius (R)

* Inscribed Circle Radius (r)

Fantasia decided to paint her circular room which had a diameter of 25 feet. She started painting in

Fantasia decided to paint her circular room which had a diameter of 25 feet. She started painting in the center and when she had painted a circle with a 5-foot diameter, she used one quart of paint. How many more quarts of paint must Fantasia buy to finish her room?
The area formula for a circle is:
Area = pir^2
Area of full room
Radius = D/2
Radius = 25/2
Radius = 12.5
Area = 3.1415 * 12.5 * 12.5
Area = 490.625
Area of 5-foot diameter circle
Radius = D/2
Radius = 5/2
Radius = 2.5
Area = 3.1415 * 2.5 * 2.5
Area = 19.625
So 1 quart of paint covers 19.625 square feet
Area of unpainted room = Area of Room - Area of 5-foot diameter circle
Area of unpainted room = 490.625 - 19.625
Area of unpainted room = 471
Calculate quarts of paint needed:
Quarts of paint needed = Area of unpainted Room / square feet per quart of paint
Quarts of paint needed = 471/19.625
Quarts of paint needed = [B]24 quarts[/B]

If the circumference of a circular rug is 16? feet, then what is the area of the rug in terms of pi

If the circumference of a circular rug is 16? feet, then what is the area of the rug in terms of pi
C = 2pir, so we have:
C = 16?
16? = 2?r
Divide each side by 2?:
r = 16?/2?
r = 8
Now, the area of a circle A is denoted below:
A = ?r^2
Given r = 8 from above, we have:
A = ?(8)^2
A = [B]64?[/B]

If the diameter of a circle is n, what is the circumference?

If the diameter of a circle is n, what is the circumference?
Diameter of a circle = pi(d)
Given d = n, we have:
Diameter = pi(n)

if the point (.53,y) is on the unit circle in quadrant 1, what is the value of y?

if the point (.53,y) is on the unit circle in quadrant 1, what is the value of y?
Unit circle equation:
x^2 + y^2 = 1
Plugging in x = 0.53, we get
(0.53)^2 + y^2 = 1
0.2809 + y^2 = 1
Subtract 0.2809 from each side:
y^2 = 0.7191
y = [B]0.848[/B]

Laura found a roll of fencing in her garage. She couldn't decide whether to fence in a square garden

Laura found a roll of fencing in her garage. She couldn't decide whether to fence in a square garden or a round garden with the fencing.
Laura did some calculations and found that a circular garden would give her 1380 more square feet than a square garden. How many feet of fencing were in the roll that Laura found? (Round to the nearest foot.)
Feet of fencing = n
Perimeter of square garden = n
Each side of square = n/4
Square garden's area = (n/4)^2 = n^2/16
Area of circle garden with circumference = n is:
Circumference = pi * d
n = pi * d
Divide body tissues by pi:
d = n/pi
Radius = n/2pi
Area = pi * n/2pi * n/2pi
Area = pin^2/4pi^2
Reduce by canceling pi:
n^2/4pi
n^2/4 * 3.14
n^2/12.56
The problem says that the difference between the square's area and the circle's area is equal to 1380 square feet.
Area of Circle - Area of Square = 1380
n^2/12.56 - n^2/16 = 1380
Common denominator = 200.96
(16n^2 - 12.56n^2)/200.96 = 1380
3.44n^2/200.96 = 1380
Cross multiply:
3.44n^2 = 277,324.8
n^2 = 80,617.7
n = 283.9
Nearest foot = [B]284[/B]

Marco orders a large pizza, with a diameter of 14 inches. It is cut into 8 congruent pieces. what is

Marco orders a large pizza, with a diameter of 14 inches. It is cut into 8 congruent pieces. what is the area of one piece?
A pizza is a circle. If the diameter of the pizza is 14 inches, the radius is 14/2 = 7 inches.
Area of a circle is pi(r^2). With r = 7, we have:
A =7^2(pi)
A = 49pi
Area of a slice of pizza is the area of the full pizza divided by 8
A(Slice) = [B]49pi/8[/B]

The circle has an arc measure of 180 degrees

The circle has an arc measure of 180 degrees - True or False.
False. A Circle has an arc measure of 360 degrees.
A few vital facts about arcs measures, also called central angles:
[LIST=1]
[*]An arc measure [I]< [/I]180° is a minor arc.
[*]An arc measure [I]> [/I]180° is a major arc.
[*]An arc measure [I]= [/I]180° is a semicircle.
[*]An arc measure [I]= 36[/I]0° is a circle.
[/LIST]

Three tennis balls each have a radius of 2 inches. They are put into a 12 inch high cylinder with a

Three tennis balls each have a radius of 2 inches. They are put into a 12 inch high cylinder with a 4 inch diameter. What is the volume of the space remaining in the cylinder?
Volume of each ball is 4/3 ?r^3
V = 4/3 * 3.1415 * 2^3
V = 1.33 * 3.1415 * 8 = 33.41 cubic inches
The volume of 3 balls is:
V = 3(33.41)
V = 100.23
Volume of the cylinder is area of circle times height:
V = 3.14 * 2 * 2 * 1 = 150.72
Volume of remaining space is:
V = Volume of cylinder - Volume of 3 balls
V = 150.72 - 100.23
V = [B]50.49[/B]

Trig Measurement

Free Trig Measurement Calculator - Given an angle θ, this calculates the following measurements:

Sin(θ) = Sine

Cos(θ) = Cosine

Tan(θ) = Tangent

Csc(θ) = Cosecant

Sec(θ) = Secant

Cot(θ) = Cotangent

Arcsin(x) = θ = Arcsine

Arccos(x) = θ = Arccosine

Arctan(x) =θ = Arctangent

Also converts between Degrees and Radians and Gradians

Coterminal Angles as well as determine if it is acute, obtuse, or right angle. For acute angles, a cofunction will be determined. Also shows the trigonometry function unit circle

Sin(θ) = Sine

Cos(θ) = Cosine

Tan(θ) = Tangent

Csc(θ) = Cosecant

Sec(θ) = Secant

Cot(θ) = Cotangent

Arcsin(x) = θ = Arcsine

Arccos(x) = θ = Arccosine

Arctan(x) =θ = Arctangent

Also converts between Degrees and Radians and Gradians

Coterminal Angles as well as determine if it is acute, obtuse, or right angle. For acute angles, a cofunction will be determined. Also shows the trigonometry function unit circle

Unit Circle

Free Unit Circle Calculator - Determines if coordinates for a unit circle are valid, or calculates a variable for unit circle coordinates

Venn Diagram (2 circles)

Free Venn Diagram (2 circles) Calculator - Given two circles A and B with an intersection piece of C, this will calculate all relevant probabilities of the Venn Diagram.

What is a Unit Circle

Free What is a Unit Circle Calculator - This lesson walks you through what a unit circle is and how to use it

What is the formula for the area of a circle?

What is the formula for the area of a circle?
Given a radius r, we have Area (A) of:
[B]A = ?r^2[/B]

What is the formula for the circumference of a circle?

What is the formula for the circumference of a circle?
Given radius r and diameter d, the circumference C is:
[B]C = 2?r or ?d[/B]

What is the ratio of the area of a circle to the area of a square drawn around that circle? Express

What is the ratio of the area of a circle to the area of a square drawn around that circle? Express your answer in terms of pi.
Area of a circle = pir^2
area of a square = (2r)^2 = 4r^2
Ratio = pir^2/4r^2
Ratio = [B]pi/4[/B]

When a circle's radius triples, what happens to its area?

When a circle's radius triples, what happens to its area?
A = ?r^2
When r = 3r, then we have:
a = ?(3r)^2
A = 9(?r^2)
This means Area increases by [B]9x
[MEDIA=youtube]j5aqShSh4uE[/MEDIA][/B]