l
You entered a number set X of {27.86,13.29,33.03,44.31,16.58,42.43,39.61,25.51,39.14,16.58,47.13,14.70,57.47,34.44}
From the 14 numbers you entered, we want to calculate the mean, variance, standard deviation, standard error of the mean, skewness, average deviation (mean absolute deviation), median, mode, range, Pearsons Skewness Coefficient of that number set, entropy, mid-range
13.29, 14.70, 16.58, 16.58, 25.51, 27.86, 33.03, 34.44, 39.14, 39.61, 42.43, 44.31, 47.13, 57.47
Rank Ascending
13.29 is the 1st lowest/smallest number
14.70 is the 2nd lowest/smallest number
16.58 is the 3rd lowest/smallest number
16.58 is the 4th lowest/smallest number
25.51 is the 5th lowest/smallest number
27.86 is the 6th lowest/smallest number
33.03 is the 7th lowest/smallest number
34.44 is the 8th lowest/smallest number
39.14 is the 9th lowest/smallest number
39.61 is the 10th lowest/smallest number
42.43 is the 11th lowest/smallest number
44.31 is the 12th lowest/smallest number
47.13 is the 13th lowest/smallest number
57.47 is the 14th lowest/smallest number
57.47, 47.13, 44.31, 42.43, 39.61, 39.14, 34.44, 33.03, 27.86, 25.51, 16.58, 16.58, 14.70, 13.29
Rank Descending
57.47 is the 1st highest/largest number
47.13 is the 2nd highest/largest number
44.31 is the 3rd highest/largest number
42.43 is the 4th highest/largest number
39.61 is the 5th highest/largest number
39.14 is the 6th highest/largest number
34.44 is the 7th highest/largest number
33.03 is the 8th highest/largest number
27.86 is the 9th highest/largest number
25.51 is the 10th highest/largest number
16.58 is the 11th highest/largest number
16.58 is the 12th highest/largest number
14.70 is the 13th highest/largest number
13.29 is the 14th highest/largest number
Sort our number set in ascending order
and assign a ranking to each number:
Number Set Value | 13.29 | 14.70 | 16.58 | 16.58 | 25.51 | 27.86 | 33.03 | 34.44 | 39.14 | 39.61 | 42.43 | 44.31 | 47.13 | 57.47 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Since we have 14 numbers in our original number set,
we assign ranks from lowest to highest (1 to 14)
Our original number set in unsorted order was 13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47
Our respective ranked data set is 1,2,4,4,5,6,7,8,9,10,11,12,13,14
Root Mean Square = | √A |
√N |
where A = x12 + x22 + x32 + x42 + x52 + x62 + x72 + x82 + x92 + x102 + x112 + x122 + x132 + x142 and N = 14 number set items
A = 13.292 + 14.702 + 16.582 + 16.582 + 25.512 + 27.862 + 33.032 + 34.442 + 39.142 + 39.612 + 42.432 + 44.312 + 47.132 + 57.472
A = 176.6241 + 216.09 + 274.8964 + 274.8964 + 650.7601 + 776.1796 + 1090.9809 + 1186.1136 + 1531.9396 + 1568.9521 + 1800.3049 + 1963.3761 + 2221.2369 + 3302.8009
A = 17035.1516
RMS = | √17035.1516 |
√14 |
RMS = | 130.51877872552 |
3.7416573867739 |
RMS = 34.882610895074
Central tendency contains:
Mean, median, mode, harmonic mean,
geometric mean, mid-range, weighted-average:
μ = | Sum of your number Set |
Total Numbers Entered |
μ = | ΣXi |
n |
μ = | 13.29 + 14.70 + 16.58 + 16.58 + 25.51 + 27.86 + 33.03 + 34.44 + 39.14 + 39.61 + 42.43 + 44.31 + 47.13 + 57.47 |
14 |
μ = | 452.08 |
14 |
μ = 32.291428571429
Since our number set contains 14 elements which is an even number,
our median number is determined as follows
Number Set = (n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14)
Median Number 1 = ½(n)
Median Number 1 = ½(14)
Median Number 1 = Number Set Entry 7
Median Number 2 = Median Number 1 + 1
Median Number 2 = Number Set Entry 7 + 1
Median Number 2 = Number Set Entry 8
Median = ½(n7 + n8)
Our median is the average of entry 7 and entry 8 of our number set highlighted in red:
(13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47)
Median = ½(33.03 + 34.44)
Median = ½(67.47)
Median = 33.735
()
Our mode is denoted as: 16.58
Mode = 16.58
Harmonic Mean = | N |
1/x1 + 1/x2 + 1/x3 + 1/x4 + 1/x5 + 1/x6 + 1/x7 + 1/x8 + 1/x9 + 1/x10 + 1/x11 + 1/x12 + 1/x13 + 1/x14 |
With N = 14 and each xi a member of the number set you entered, we have:
Harmonic Mean = | 14 |
1/13.29 + 1/14.70 + 1/16.58 + 1/16.58 + 1/25.51 + 1/27.86 + 1/33.03 + 1/34.44 + 1/39.14 + 1/39.61 + 1/42.43 + 1/44.31 + 1/47.13 + 1/57.47 |
Harmonic Mean = | 14 |
0.075244544770504 + 0.068027210884354 + 0.060313630880579 + 0.060313630880579 + 0.039200313602509 + 0.035893754486719 + 0.030275507114744 + 0.029036004645761 + 0.025549310168625 + 0.025246149962131 + 0.023568230025925 + 0.022568269013767 + 0.02121790791428 + 0.017400382808422 |
Harmonic Mean = | 14 |
0.5338548471589 |
Harmonic Mean = 26.224356816288
Geometric Mean = (x1 * x2 * x3 * x4 * x5 * x6 * x7 * x8 * x9 * x10 * x11 * x12 * x13 * x14)1/N
Geometric Mean = (13.29 * 14.70 * 16.58 * 16.58 * 25.51 * 27.86 * 33.03 * 34.44 * 39.14 * 39.61 * 42.43 * 44.31 * 47.13 * 57.47)1/14
Geometric Mean = 3.4277862923141E+200.071428571428571
Geometric Mean = 29.294540856618
Mid-Range = | Maximum Value in Number Set + Minimum Value in Number Set |
2 |
Mid-Range = | 57.47 + 13.29 |
2 |
Mid-Range = | 70.76 |
2 |
Mid-Range = 35.38
Take the first digit of each value in our number set
Use this as our stem value
Use the remaining digits for our leaf portion
Stem | Leaf |
---|---|
5 | 7.47 |
4 | 2.43,4.31,7.13 |
3 | 3.03,4.44,9.14,9.61 |
2 | 5.51,7.86 |
1 | 3.29,4.70,6.58,6.58 |
Let's evaluate the square difference from the mean of each term (Xi - μ)2:
(X1 - μ)2 = (13.29 - 32.291428571429)2 = -19.0014285714292 = 361.0542877551
(X2 - μ)2 = (14.70 - 32.291428571429)2 = -17.5914285714292 = 309.45835918367
(X3 - μ)2 = (16.58 - 32.291428571429)2 = -15.7114285714292 = 246.8489877551
(X4 - μ)2 = (16.58 - 32.291428571429)2 = -15.7114285714292 = 246.8489877551
(X5 - μ)2 = (25.51 - 32.291428571429)2 = -6.78142857142862 = 45.987773469388
(X6 - μ)2 = (27.86 - 32.291428571429)2 = -4.43142857142862 = 19.637559183674
(X7 - μ)2 = (33.03 - 32.291428571429)2 = 0.738571428571432 = 0.54548775510204
(X8 - μ)2 = (34.44 - 32.291428571429)2 = 2.14857142857142 = 4.6163591836734
(X9 - μ)2 = (39.14 - 32.291428571429)2 = 6.84857142857142 = 46.902930612245
(X10 - μ)2 = (39.61 - 32.291428571429)2 = 7.31857142857142 = 53.561487755102
(X11 - μ)2 = (42.43 - 32.291428571429)2 = 10.1385714285712 = 102.79063061224
(X12 - μ)2 = (44.31 - 32.291428571429)2 = 12.0185714285712 = 144.44605918367
(X13 - μ)2 = (47.13 - 32.291428571429)2 = 14.8385714285712 = 220.18320204082
(X14 - μ)2 = (57.47 - 32.291428571429)2 = 25.1785714285712 = 633.96045918367
ΣE(Xi - μ)2 = 361.0542877551 + 309.45835918367 + 246.8489877551 + 246.8489877551 + 45.987773469388 + 19.637559183674 + 0.54548775510204 + 4.6163591836734 + 46.902930612245 + 53.561487755102 + 102.79063061224 + 144.44605918367 + 220.18320204082 + 633.96045918367
ΣE(Xi - μ)2 = 2436.8425714286
Population | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
|
|
|
| ||||||
Variance: σp2 = 174.06018367347 | Variance: σs2 = 187.44942857143 | ||||||||
Standard Deviation: σp = √σp2 = √174.06018367347 | Standard Deviation: σs = √σs2 = √187.44942857143 | ||||||||
Standard Deviation: σp = 13.1932 | Standard Deviation: σs = 13.6912 |
Population | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
| ||||
SEM = 3.526 | SEM = 3.6591 |
Skewness = | E(Xi - μ)3 |
(n - 1)σ3 |
Let's evaluate the square difference from the mean of each term (Xi - μ)3:
(X1 - μ)3 = (13.29 - 32.291428571429)3 = -19.0014285714293 = -6860.5472591866
(X2 - μ)3 = (14.70 - 32.291428571429)3 = -17.5914285714293 = -5443.8146214111
(X3 - μ)3 = (16.58 - 32.291428571429)3 = -15.7114285714293 = -3878.3502390437
(X4 - μ)3 = (16.58 - 32.291428571429)3 = -15.7114285714293 = -3878.3502390437
(X5 - μ)3 = (25.51 - 32.291428571429)3 = -6.78142857142863 = -311.86280094169
(X6 - μ)3 = (27.86 - 32.291428571429)3 = -4.43142857142863 = -87.02244083965
(X7 - μ)3 = (33.03 - 32.291428571429)3 = 0.738571428571433 = 0.40288167055393
(X8 - μ)3 = (34.44 - 32.291428571429)3 = 2.14857142857143 = 9.9185774460641
(X9 - μ)3 = (39.14 - 32.291428571429)3 = 6.84857142857143 = 321.21807050729
(X10 - μ)3 = (39.61 - 32.291428571429)3 = 7.31857142857143 = 391.99357395627
(X11 - μ)3 = (42.43 - 32.291428571429)3 = 10.1385714285713 = 1042.1501506501
(X12 - μ)3 = (44.31 - 32.291428571429)3 = 12.0185714285713 = 1736.0352798746
(X13 - μ)3 = (47.13 - 32.291428571429)3 = 14.8385714285713 = 3267.2041708542
(X14 - μ)3 = (57.47 - 32.291428571429)3 = 25.1785714285713 = 15962.218704446
ΣE(Xi - μ)3 = -6860.5472591866 + -5443.8146214111 + -3878.3502390437 + -3878.3502390437 + -311.86280094169 + -87.02244083965 + 0.40288167055393 + 9.9185774460641 + 321.21807050729 + 391.99357395627 + 1042.1501506501 + 1736.0352798746 + 3267.2041708542 + 15962.218704446
ΣE(Xi - μ)3 = 2271.1938089388
Skewness = | E(Xi - μ)3 |
(n - 1)σ3 |
Skewness = | 2271.1938089388 |
(14 - 1)13.19323 |
Skewness = | 2271.1938089388 |
(13)2296.4153347896 |
Skewness = | 2271.1938089388 |
29853.399352264 |
Skewness = 0.076078230895554
AD = | Σ|Xi - μ| |
n |
Evaluate the absolute value of the difference from the mean
|Xi - μ|:
|X1 - μ| = |13.29 - 32.291428571429| = |-19.001428571429| = 19.001428571429
|X2 - μ| = |14.70 - 32.291428571429| = |-17.591428571429| = 17.591428571429
|X3 - μ| = |16.58 - 32.291428571429| = |-15.711428571429| = 15.711428571429
|X4 - μ| = |16.58 - 32.291428571429| = |-15.711428571429| = 15.711428571429
|X5 - μ| = |25.51 - 32.291428571429| = |-6.7814285714286| = 6.7814285714286
|X6 - μ| = |27.86 - 32.291428571429| = |-4.4314285714286| = 4.4314285714286
|X7 - μ| = |33.03 - 32.291428571429| = |0.73857142857143| = 0.73857142857143
|X8 - μ| = |34.44 - 32.291428571429| = |2.1485714285714| = 2.1485714285714
|X9 - μ| = |39.14 - 32.291428571429| = |6.8485714285714| = 6.8485714285714
|X10 - μ| = |39.61 - 32.291428571429| = |7.3185714285714| = 7.3185714285714
|X11 - μ| = |42.43 - 32.291428571429| = |10.138571428571| = 10.138571428571
|X12 - μ| = |44.31 - 32.291428571429| = |12.018571428571| = 12.018571428571
|X13 - μ| = |47.13 - 32.291428571429| = |14.838571428571| = 14.838571428571
|X14 - μ| = |57.47 - 32.291428571429| = |25.178571428571| = 25.178571428571
Σ|Xi - μ| = 19.001428571429 + 17.591428571429 + 15.711428571429 + 15.711428571429 + 6.7814285714286 + 4.4314285714286 + 0.73857142857143 + 2.1485714285714 + 6.8485714285714 + 7.3185714285714 + 10.138571428571 + 12.018571428571 + 14.838571428571 + 25.178571428571
Σ|Xi - μ| = 158.45714285714
Calculate average deviation (mean absolute deviation)
AD = | Σ|Xi - μ| |
n |
AD = | 158.45714285714 |
14 |
Average Deviation = 11.31837
Range = Largest Number in the Number Set - Smallest Number in the Number Set
Range = 57.47 - 13.29
Range = 44.18
PSC1 = | μ - Mode |
σ |
PSC1 = | 3(32.291428571429 - 16.58) |
13.1932 |
PSC1 = | 3 x 15.711428571429 |
13.1932 |
PSC1 = | 47.134285714286 |
13.1932 |
PSC1 = 3.5726
PSC2 = | μ - Median |
σ |
PSC1 = | 3(32.291428571429 - 33.735) |
13.1932 |
PSC2 = | 3 x -1.4435714285714 |
13.1932 |
PSC2 = | -4.3307142857143 |
13.1932 |
PSC2 = -0.3283
Entropy = Ln(n)
Entropy = Ln(14)
Entropy = 2.6390573296153
Mid-Range = | Smallest Number in the Set + Largest Number in the Set |
2 |
Mid-Range = | 57.47 + 13.29 |
2 |
Mid-Range = | 70.76 |
2 |
Mid-Range = 35.38
We need to sort our number set from lowest to highest shown below:
{13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47}
V = | y(n + 1) |
100 |
V = | 75(14 + 1) |
100 |
V = | 75(15) |
100 |
V = | 1125 |
100 |
V = 11 ← Rounded down to the nearest integer
Upper quartile (UQ) point = Point # 11 in the dataset which is 42.43
13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47
V = | y(n + 1) |
100 |
V = | 25(14 + 1) |
100 |
V = | 25(15) |
100 |
V = | 375 |
100 |
V = 4 ← Rounded up to the nearest integer
Lower quartile (LQ) point = Point # 4 in the dataset which is 16.58
13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47
IQR = UQ - LQ
IQR = 42.43 - 16.58
IQR = 25.85
Lower Inner Fence (LIF) = LQ - 1.5 x IQR
Lower Inner Fence (LIF) = 16.58 - 1.5 x 25.85
Lower Inner Fence (LIF) = 16.58 - 38.775
Lower Inner Fence (LIF) = -22.195
Upper Inner Fence (UIF) = UQ + 1.5 x IQR
Upper Inner Fence (UIF) = 42.43 + 1.5 x 25.85
Upper Inner Fence (UIF) = 42.43 + 38.775
Upper Inner Fence (UIF) = 81.205
Lower Outer Fence (LOF) = LQ - 3 x IQR
Lower Outer Fence (LOF) = 16.58 - 3 x 25.85
Lower Outer Fence (LOF) = 16.58 - 77.55
Lower Outer Fence (LOF) = -60.97
Upper Outer Fence (UOF) = UQ + 3 x IQR
Upper Outer Fence (UOF) = 42.43 + 3 x 25.85
Upper Outer Fence (UOF) = 42.43 + 77.55
Upper Outer Fence (UOF) = 119.98
Suspect Outliers are values between the inner and outer fences
We wish to mark all values in our dataset (v) in red below such that -60.97 < v < -22.195 and 81.205 < v < 119.98
13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47
Highly Suspect Outliers are values outside the outer fences
We wish to mark all values in our dataset (v) in red below such that v < -60.97 or v > 119.98
13.29,14.70,16.58,16.58,25.51,27.86,33.03,34.44,39.14,39.61,42.43,44.31,47.13,57.47
13.29, 14.70, 16.58, 16.58, 25.51, 27.86, 33.03, 34.44, 39.14, 39.61, 42.43, 44.31, 47.13, 57.47
Multiply each value by each probability amount
We do this by multiplying each Xi x pi to get a weighted score Y
Weighted Average = | X1p1 + X2p2 + X3p3 + X4p4 + X5p5 + X6p6 + X7p7 + X8p8 + X9p9 + X10p10 + X11p11 + X12p12 + X13p13 + X14p14 |
n |
Weighted Average = | 13.29 x 0.2 + 14.70 x 0.4 + 16.58 x 0.6 + 16.58 x 0.8 + 25.51 x 0.9 + 27.86 x + 33.03 x + 34.44 x + 39.14 x + 39.61 x + 42.43 x + 44.31 x + 47.13 x + 57.47 x |
14 |
Weighted Average = | 2.658 + 5.88 + 9.948 + 13.264 + 22.959 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 |
14 |
Weighted Average = | 54.709 |
14 |
Weighted Average = 3.9077857142857
Show the freqency distribution table for this number set
13.29, 14.70, 16.58, 16.58, 25.51, 27.86, 33.03, 34.44, 39.14, 39.61, 42.43, 44.31, 47.13, 57.47
Choose the smallest integer k such that 2k ≥ n where n = 14
For k = 1, we have 21 = 2
For k = 2, we have 22 = 4
For k = 3, we have 23 = 8
For k = 4, we have 24 = 16 ← Use this since it is greater than our n value of 14
Therefore, we use 4 intervals
Our maximum value in our number set of 57.47 - 13.29 = 44.18
Each interval size is the difference of the maximum and minimum value divided by the number of intervals
Interval Size = | 44.18 |
4 |
Add 1 to this giving us 11 + 1 = 12
Class Limits | Class Boundaries | FD | CFD | RFD | CRFD |
---|---|---|---|---|---|
13.29 - 25.29 | 12.79 - 25.79 | 4 | 4 | 4/14 = 28.57% | 4/14 = 28.57% |
25.29 - 37.29 | 24.79 - 37.79 | 4 | 4 + 4 = 8 | 4/14 = 28.57% | 8/14 = 57.14% |
37.29 - 49.29 | 36.79 - 49.79 | 5 | 4 + 4 + 5 = 13 | 5/14 = 35.71% | 13/14 = 92.86% |
49.29 - 61.29 | 48.79 - 61.79 | 1 | 4 + 4 + 5 + 1 = 14 | 1/14 = 7.14% | 14/14 = 100% |
14 | 100% |
Go through our 14 numbers
Determine the ratio of each number to the next one
13.29:14.70 → 0.9041
14.70:16.58 → 0.8866
16.58:16.58 → 1
16.58:25.51 → 0.6499
25.51:27.86 → 0.9156
27.86:33.03 → 0.8435
33.03:34.44 → 0.9591
34.44:39.14 → 0.8799
39.14:39.61 → 0.9881
39.61:42.43 → 0.9335
42.43:44.31 → 0.9576
44.31:47.13 → 0.9402
47.13:57.47 → 0.8201
Successive Ratio = 13.29:14.70,14.70:16.58,16.58:16.58,16.58:25.51,25.51:27.86,27.86:33.03,33.03:34.44,34.44:39.14,39.14:39.61,39.61:42.43,42.43:44.31,44.31:47.13,47.13:57.47 or 0.9041,0.8866,1,0.6499,0.9156,0.8435,0.9591,0.8799,0.9881,0.9335,0.9576,0.9402,0.8201