 # dollar

Your Search returned 171 results for dollar

dollar - Currency unit

\$2,030.00 was invested at 10% per annum compounded annually. What interest has been earned (in dolla
\$2,030.00 was invested at 10% per annum compounded annually. What interest has been earned (in dollars correct to the nearest cent) after 5 years? Using our [URL='http://www.mathcelebrity.com/compoundint.php?bal=2030&nval=5&int=10&pl=Annually']compound interest calculator[/URL], we get: [B]3,269.34[/B]

\$25.00 is how much in quarters
\$25.00 is how much in quarters We type [URL='https://www.mathcelebrity.com/coincon.php?quant=25&type=dollar&pl=Calculate']25 dollars in our math engine[/URL] and we get: [B]100 quarters[/B]

\$96 less x dollars
\$96 less x dollars The word [I]less[/I] means we subtract, so we have: [B]\$96 - \$x or \$(96 - x)[/B]

1 egg is 2 dollars. Then how much 2 eggs?
1 egg is 2 dollars. Then how much 2 eggs? 2 eggs * 2 dollars / 1 egg = [B]\$4[/B]

2200 dollars is placed in an account with an annual interest rate of 7.25%. How much will be in the
2200 dollars is placed in an account with an annual interest rate of 7.25%. How much will be in the account after 29 years [URL='https://www.mathcelebrity.com/compoundint.php?bal=2200&nval=29&int=7.25&pl=Annually']Using our compound interest calculator[/URL], with an initial balance of 2,200, 29 years for time, and 7.25% annual interest rate, we get: [B]16,747.28[/B]

2900 dollars is placed in an account with an annual interest rate of 9%. Hoe much will be in the acc
2900 dollars is placed in an account with an annual interest rate of 9%. Hoe much will be in the account after 13 years to the nearest cent Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=2900&nval=13&int=9&pl=Annually']compound interest with balance calculator[/URL], we get: [B]8,890.83[/B]

2900 dollars is placed in an account with annual interest rate of 9%. How much will be in the accoun
2900 dollars is placed in an account with annual interest rate of 9%. How much will be in the account after 13 years, round to the nearest cent Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=2090&nval=13&int=9&pl=Annually']compound interest calculato[/URL]r, we get a balance of: [B]6,407.53[/B]

6700 dollars is placed in an account with an annual interest rate of 8%. How much will be in the acc
6700 dollars is placed in an account with an annual interest rate of 8%. How much will be in the account after 24 years, to the nearest cent? [URL='https://www.mathcelebrity.com/intbal.php?startbal=6700&intrate=8&bstart=1%2F1%2F2000&bend=1%2F1%2F2024&pl=Annual+Credit']Using our balance with interest calculator[/URL], we get: [B]\$42,485.94[/B]

6700 dollars is placed in an account with an annual interest rate of 8%. show much will be in the ac
6700 dollars is placed in an account with an annual interest rate of 8%. show much will be in the account after 24 years, to the nearest cent ? Using our compound interest calculator, we get: [B]42,485.91 [MEDIA=youtube]0C25FB_4004[/MEDIA][/B]

6700 dollars is placed in an account with an annual interest rate of 8.25%. How much will be in the
6700 dollars is placed in an account with an annual interest rate of 8.25%. How much will be in the account after 28 years, to the nearest cent? Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=6700&nval=28&int=8.25&pl=Annually']balance with interest calculator[/URL], we get: 61,667.47

7100 dollars is placed in an account with an annual interest rate of 7.75%. How much will be in the
7100 dollars is placed in an account with an annual interest rate of 7.75%. How much will be in the account after 30 years, to the nearest cent? Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=7100&nval=30&int=7.75&pl=Annually']balance with compound interest calculator[/URL], we get: 66,646.40

7100 dollars is placed in an account with an interest of 7.75%. How much will be in the account afte
7100 dollars is placed in an account with an interest of 7.75%. How much will be in the account after 30 years to the nearest cent? Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=7100&nval=30&int=7.75&pl=Annually']balance with interest calculator[/URL], we get: [B]\$66,646.40[/B]

75% of x is 25 dollars and 99 cents
75% of x is 25 dollars and 99 cents [URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=+90&den1=+80&pct=75&pcheck=4&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']Since 75%[/URL] is 0.75 as a decimal, we rewrite this as an algebraic expression: 0.75x = 25.99 If we want to solve for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=0.75x%3D25.99&pl=Solve']type this equation into our search engine[/URL] and we get: x = [B]34.65[/B]

7700 dollars is placed in an account with an annual interest rate of 5.75%. How much will be in the
7700 dollars is placed in an account with an annual interest rate of 5.75%. How much will be in the [URL='https://www.mathcelebrity.com/compoundint.php?bal=7700&nval=5.75&int=24&pl=Annually']Using our compound balance interest calculator[/URL], we get: [B]\$26,525.61[/B]

7700 dollars is placed in an account with an annual interest rate of 5.75%. How much will be in the
7700 dollars is placed in an account with an annual interest rate of 5.75%. How much will be in the account after 24 years, to the nearest cent? [URL='https://www.mathcelebrity.com/compoundint.php?bal=7700&nval=24&int=5.75&pl=Annually']Using our balance with interest calculator[/URL], we get: [B]\$29,459.12[/B]

7900 dollars is placed in an account with an annual interest rate of 5.5%. How much will be in the a
7900 dollars is placed in an account with an annual interest rate of 5.5%. How much will be in the account after 11 years, to the nearest cent? Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=7900&nval=11&int=5.5&pl=Annually']compound interest calculator[/URL], we get: [B]14,236.53[/B]

8300 dollars is placed in an account with an annual interest rate of 6.5%. How much will be in the a
8300 dollars is placed in an account with an annual interest rate of 6.5%. How much will be in the account after 14 years, to the nearest cent? [URL='https://www.mathcelebrity.com/compoundint.php?bal=8300&nval=14&int=6.5&pl=Annually']Using our balance with interest calculator[/URL], we get: [B]\$20,043.46[/B]

9000 dollars is placed in an account with an annual interest rate of 8%. How much will be in the acc
9000 dollars is placed in an account with an annual interest rate of 8%. How much will be in the account after 17 years, to the nearest cent? Using our [URL='http://www.mathcelebrity.com/compoundint.php?bal=9000&nval=17&int=8&pl=Annually']compound interest accumulated balance calculator[/URL], we get: [B]\$33,300.16[/B]

A \$654,000 property is depreciated for tax purposes by its owner with the straight-line depreciation
A \$654,000 property is depreciated for tax purposes by its owner with the straight-line depreciation method. The value of the building, y, after x months of use is given by y = 654,000 ? 1800x dollars. After how many months will the value of the building be \$409,200? We want to know x for the equation: 654000 - 1800x = 409200 To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=654000-1800x%3D409200&pl=Solve']type it in our math engine[/URL] and we get: x = [B]136 months[/B]

A baker determined the annual profit in dollars from selling pies using p(n ) = 52n - 0.05n^2, where
A baker determined the annual profit in dollars from selling pies using p(n ) = 52n - 0.05n^2, where n is the number of pies sold. What is the annual profit if the baker sells 700 pies? p(700) = 52(700) - 0.05(700)^2 p(700) = 36400 - 0.05 * 490000 p(700) = 36400 - 24500 p(700) = [B]11900[/B]

A baker determined the annual profit in dollars from selling pies using p(n) = 52n - 0.05n^2 , where
A baker determined the annual profit in dollars from selling pies using p(n) = 52n - 0.05n^2 , where n is the number of pies sold. What is the annual profit if the baker sells 400 pies? p(400) = 52(400) - 0.05(400)^2 p(400) = 20800 - 0.05(160000) p(400) = 20800 - 8000 p(400) = [B]12800[/B]

A cash register contains \$5 bills and \$20 bills with a total value of \$180 . If there are 15 bills t
A cash register contains \$5 bills and \$20 bills with a total value of \$180 . If there are 15 bills total, then how many of each does the register contain? Let f be the number of \$5 dollar bills and t be the number of \$20 bills. We're given the following equations: [LIST=1] [*]f + t = 15 [*]5f + 20t = 180 [/LIST] We can solve this system of equations 3 ways. We get [B]t = 7[/B] and [B]f = 8[/B]. [LIST] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Substitution']Substitution Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Elimination']Elimination Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+15&term2=5f+%2B+20t+%3D+180&pl=Cramers+Method']Cramers Method[/URL] [/LIST]

A cashier has 44 bills, all of which are \$10 or \$20 bills. The total value of the money is \$730. How
A cashier has 44 bills, all of which are \$10 or \$20 bills. The total value of the money is \$730. How many of each type of bill does the cashier have? Let a be the amount of \$10 bills and b be the amount of \$20 bills. We're given two equations: [LIST=1] [*]a + b = 44 [*]10a + 20b = 730 [/LIST] We rearrange equation 1 in terms of a. We subtract b from each side and we get: [LIST=1] [*]a = 44 - b [*]10a + 20b = 730 [/LIST] Now we substitute equation (1) for a into equation (2): 10(44 - b) + 20b = 730 Multiply through to remove the parentheses: 440 - 10b + 20b = 730 Group like terms: 440 + 10b = 730 Now, to solve for b, we [URL='https://www.mathcelebrity.com/1unk.php?num=440%2B10b%3D730&pl=Solve']type this equation into our search engine[/URL] and we get: b = [B]29 [/B] To get a, we take b = 29 and substitute it into equation (1) above: a = 44 - 29 a = [B]15 [/B] So we have [B]15 ten-dollar bills[/B] and [B]29 twenty-dollar bills[/B]

A cellular offers a monthly plan of \$15 for 350 min. Another cellular offers a monthly plan of \$20 f
A cellular offers a monthly plan of \$15 for 350 min. Another cellular offers a monthly plan of \$20 for 425 min. Which company offers the better plan? Let's figure out the unit cost of minutes per dollar: [LIST=1] [*]Plan 1: 350 minutes / \$15 = 23.33 minutes per dollar [*]Plan 2: 425 minutes / \$20 = 21.25 minutes per dollar [/LIST] [B]Plan 2 is better, because you get more minutes per dollar.[/B]

A class of n students was raising money for a field trip. They have earned \$800 so far. Each student
A class of [I]n[/I] students was raising money for a field trip. They have earned \$800 so far. Each student plans to work [I]x[/I] more hours at a wage of [I]y[/I] dollars per hour. When they are done, how much money will they have earned? Class of n students * x more hours worked * y dollars per hour = xyn Total dollars earned includes the \$800 already earned: \$800 + xyn

A clothing store buys shirts for n dollars and then marks them up 50%. To reward their employees, th
A clothing store buys shirts for [I]n[/I] dollars and then marks them up 50%. To reward their employees, the store gives a 50% discount to all employees. How much does an employee pay for a shirt? 50% = 0.5 Markup cost = (1 + 0.5)n Markup cost = 1.5n 50% discount: 1.5n/2 = [B]0.75n[/B]

a company has revenue given by R(x)=500x dollars and total cost given by C(x)=48,000 100x dollars, w
a company has revenue given by R(x)=500x dollars and total cost given by C(x)=48,000 + 100x dollars, where x is the number of units produced and sold. How many units will give a profit Profit P(x) is given by: R(x) - C(x) So we have: P(x) = 500x - (100x + 48,000) P(x) = 500x - 100x - 48,000 P(x) = 400x - 48,000 A profit is found when P(x) > 0, so we have: 400x - 48000 > 0 To solve this inequality, [URL='https://www.mathcelebrity.com/1unk.php?num=400x-48000%3E0&pl=Solve']we type it into our search engine [/URL]and we get: [B]x > 120[/B]

A companys cost function is C(x) = 16x2 + 900 dollars, where x is the number of units. Find th
A companys cost function is C(x) = 16x^2 + 900 dollars, where x is the number of units. Find the marginal cost function. Marginal Cost is the derivative of the Cost function. [B]C'(x) = 32x[/B]

A deck of cards costs f dollars. If Sharon bought 9 decks of cards, how much did she spend?
A deck of cards costs f dollars. If Sharon bought 9 decks of cards, how much did she spend? Calculate Total Cost: Total Cost = Decks of Cards * Price per deck Total Cost = [B]9f[/B]

A fair charges an admission fee of 4 dollars for each person. Let C be the cost of admission (in d
A fair charges an admission fee of 4 dollars for each person. Let C be the cost of admission (in dollars) for P people. Write an equation relating C to P. [B]C = 4P[/B]

A financial advisor has invested \$7000 in two accounts. If one account contains x dollars, express t
A financial advisor has invested \$7000 in two accounts. If one account contains x dollars, express the amount in the second account in terms of x The other account contains: [B]7000 - x[/B]

A garden has a length that is three times its width. If the width is n feet and fencing cost \$8 per
A garden has a length that is three times its width. If the width is n feet and fencing cost \$8 per foot, what is the cost of the fencing for the garden? Garden is a rectangle which has Perimeter P of: P = 2l + 2w l = 3w P = 2(3w) + 2w P = 6w + 2w P = 8w Width w = n, so we have: P = 8n Cost = 8n * 8 = [B]64n dollars[/B]

A gasoline tank is leaking at a rate of n gallons in t hours. If the gasoline cost \$2 per gallon, wh
A gasoline tank is leaking at a rate of n gallons in t hours. If the gasoline cost \$2 per gallon, what is the value of the gasoline that will be lost in m minutes? n gallons / t hours = n/t gallons per hour are leaking The value of the gas that leaks each hour is \$2, so we have: 2n/t dollar per hour is leaking Value per minute means we divide by 60: 2n/60t Dividing top and bottom by 2 to simplify, we have: n/30t Given m minutes, we multiply to get: [B]nm/30t[/B]

A guitar that normally cost n dollars is on sale for 20% off. The tax is 8%. What is the total cost
A guitar that normally cost n dollars is on sale for 20% off. The tax is 8%. What is the total cost of the guitar including tax? Discount Amount = 0.2n Total paid after discount = n - 0.2n = 0.8n Tax amount: 0.8n * 0.08 = 0.064n After tax amount: 0.8n + 0.64n = [B]0.864n[/B]

A hoodie sold for d dollars. Now, the new price of the hoodie can be represented by 1.3d. Which desc
A hoodie sold for d dollars. Now, the new price of the hoodie can be represented by 1.3d. Which description could explain what happened to the price of the hoodie? We can rewrite this as: d(1 + 0.3) And in this format, we see that the [B]hoodie was increased by 30% [/B]which is also 1.3

A kilogram of chocolate costs8 dollars. Sally buys p kilograms. Write an equation to represent the t
A kilogram of chocolate costs8 dollars. Sally buys p kilograms. Write an equation to represent the total cost c that Sally pays. c[B] = 8p[/B]

A new company is projecting its profits over a number of weeks. They predict that their profits each
A new company is projecting its profits over a number of weeks. They predict that their profits each week can be modeled by a geometric sequence. Three weeks after they started, the company's projected profit is \$10,985.00 Four weeks after they started, the company's projected profit is \$14,280.50 Let Pn be the projected profit, in dollars, n weeks after the company started tracking their profits. a. What is the common ratio of the sequence? b. Calculate the initial value c. Construct a recurrence relation that can be used to model the value of Pn a. 14,280.50/10,985.00 = [B]1.3[/B] b. 3 weeks ago, the Initial value is 10,985/1.3^3 = [B]\$5,000 c. Pn = 5000 * 1.3^n[/B]

A parking garage charges \$5 plus \$2 per hour. You have \$16 to spend for parking. How many hours can
A parking garage charges \$5 plus \$2 per hour. You have \$16 to spend for parking. How many hours can you park? Subtract the flat rate to get the amount you have for hourly parking: 16 - 5 = 11 So we divide 11 dollars to park by 2 dollars per hour to get: 11/2 [B]5.5 hours[/B]

A person works 46 hours in one week and earns 440 dollars. They get time and a half for over 40 hour
A person works 46 hours in one week and earns 440 dollars. They get time and a half for over 40 hours. What is their hourly salary? Let the hourly rate be r. Since time and a half is 1.5 the hourly rate, We're given: 40r + 6(1.5r) = 440 40r + 9r = 440 to solve this equation for r, we type it in our search engine and we get: r = [B]\$8.98[/B]

A pile of coins, consisting of quarters and half dollars, is worth 11.75. If there are 2 more quarte
A pile of coins, consisting of quarters and half dollars, is worth 11.75. If there are 2 more quarters than half dollars, how many of each are there? Let h be the number of half-dollars and q be the number of quarters. Set up two equations: (1) q = h + 2 (2) 0.25q + 0.5h = 11.75 [U]Substitute (1) into (2)[/U] 0.25(h + 2) + 0.5h = 11.75 0.25h + 0.5 + 0.5h = 11.75 [U]Group h terms[/U] 0.75h + 0.5 = 11.75 [U]Subtract 0.5 from each side[/U] 0.75h = 11.25 [U]Divide each side by h[/U] [B]h = 15[/B] [U]Substitute h = 15 into (1)[/U] q = 15 + 2 [B]q = 17[/B]

a pound of chocolate cost 7 dollars. Raina pays p pounds
a pound of chocolate cost 7 dollars. Raina pays p pounds Cost = Price * Quantity, so we have: Cost =[B] 7p [/B]

A pound of chocolate costs 6 dollars. Greg buys p pounds. Write an equation to represent the total c
A pound of chocolate costs 6 dollars. Greg buys p pounds. Write an equation to represent the total cost c that Greg pays Since cost = price * quantity, we have: [B]c = 6p[/B]

A pound of chocolate costs 6 dollars. Ryan buys p pounds. Write an equation to represent the total c
A pound of chocolate costs 6 dollars. Ryan buys p pounds. Write an equation to represent the total cost c that Ryan pays Since cost = Price * Quantity, we have: [B]c = 6p[/B]

A pound of chocolate costs 7 dollars. Hong buys p pounds . Write an equation to represent the total
A pound of chocolate costs 7 dollars. Hong buys p pounds . Write an equation to represent the total cost c that Hong pays Our equation is the cost of chocolate multiplied by the number of pounds: [B]c = 7p[/B]

A restaurant earns \$1073 on Friday and \$1108 on Saturday. Write and solve an equation to find the am
A restaurant earns \$1073 on Friday and \$1108 on Saturday. Write and solve an equation to find the amount x (in dollars) the restaurant needs to earn on Sunday to average \$1000 per day over the three-day period. Let Sunday's earnings be s. With 3 days, we divide our sum of earnings for 3 days by 3 to get our 1,000 average, so we have: (1073 + 1108 + s)/3 = 1000 Cross multiply: 1073 + 1108 + s = 1000 * 3 1073 + 1108 + s = 3000 To solve for s, we [URL='https://www.mathcelebrity.com/1unk.php?num=1073%2B1108%2Bs%3D3000&pl=Solve']type this equation into our search engine[/URL] and we get: s = [B]819[/B]

A restaurant is going to raise all their prices by 5%. If the current price of an item is p dollars,
A restaurant is going to raise all their prices by 5%. If the current price of an item is p dollars, write an expression for the price after the increase. 5% = 0.05 as a decimal. New price = Old Price * (1 + decimal increase) New price = p * (1 + 0.05) New price = [B]1.05p[/B]

A restaurant is going to raise all their prices by 7%. If the current price of an item is p dollars
A restaurant is going to raise all their prices by 7%. If the current price of an item is p dollars, write an expression for the price after the increase. A 7% increase on price means we multiply the current price of p by 1.07. So our algebraic expression is: [B]1.07p[/B]

A salary after a 4.6% increase, of the original salary is x dollars
A salary after a 4.6% increase, of the original salary is x dollars 4.6% is also written as 0.046. Our formula for the new salary S is: S = (1 + 0.046)x [B]S = 1.046x[/B]

A Septonian won the lottery in the United States and won \$1,000,000. How many dollars in that in bas
A Septonian won the lottery in the United States and won \$1,000,000. How many dollars in that in base 7? Using our [URL='https://www.mathcelebrity.com/binary.php?num=1000000&check1=7&bchoice=7&pl=Convert']base change calculator[/URL], we get: 1,000,000 in base 7 = [B]11,333,311[/B]

A software company, in 3 consecutive years, makes profits of -3 million dollars, 10 million dollars,
A software company, in 3 consecutive years, makes profits of -3 million dollars, 10 million dollars, and -2 million dollars. What was its profit over the 3 year period? Profit = -3,o00,000 + 10,000,000 - 2,000,000 Profit = [B]5,000,000[/B]

A state park charges a \$6.00 entry fee plus \$7.50 per night of camping. Write an algebraic expressio
A state park charges a \$6.00 entry fee plus \$7.50 per night of camping. Write an algebraic expression for the cost in dollars of entering the park and camping for n nights. The cost in dollars C is found below: [B]C = 7.50n + 6[/B]

A state park charges a \$6.00 entry fee plus \$7.50 per night of camping. Write an algebraic expressio
A state park charges a \$6.00 entry fee plus \$7.50 per night of camping. Write an algebraic expression for the cost in dollars of entering the park and camping for n nights. We write this as: cost per night of camping * n nights + entry fee [B]7.50n + 6[/B]

A sum of money doubles in 20 years on simple interest. It will get triple at the same rate in: a.
A sum of money doubles in 20 years on simple interest. It will get triple at the same rate in: a. 40 years b. 50 years c. 30 years d. 60 years e. 80 years Simple interest formula if we start with 1 dollar and double to 2 dollars: 1(1 + i(20)) = 2 1 + 20i = 2 Subtract 1 from each side: 20i = 1 Divide each side by 20 i = 0.05 Now setup the same simple interest equation, but instead of 2, we use 3: 1(1 + 0.05(t)) = 3 1 + 0.05t = 3 Subtract 1 from each side: 0.05t = 2 Divide each side by 0.05 [B]t = 40 years[/B]

A vehicle purchased for \$25,000 depreciates at a constant rate of 5%. Determine the approximate valu
A vehicle purchased for \$25,000 depreciates at a constant rate of 5%. Determine the approximate value of the vehicle 11 years after purchase. Round to the nearest whole dollar. Depreciation at 5% means it retains 95% of the value. Set up the depreciation equation to get Book Value B(t) at time t. B(t) = \$25,000 * (1 - 0.05)^t Simplifying, this is: B(t) = \$25,000 * (0.95)^t The problem asks for B(11) B(11) = \$25,000 * (0.95)^11 B(11) = \$25,000 * 0.5688 B(11) = [B]\$14,220[/B]

A vendor sells h hot dogs and s sodas. If a hot dog costs twice as much as a soda, and if the vendor
A vendor sells h hot dogs and s sodas. If a hot dog costs twice as much as a soda, and if the vendor takes in a total of d dollars, how many cents does a soda cost? Let the cost of the soda be p. So the cost of a hot dog is 2p. The total cost of hot dogs: 2hp The total cost of sodas: ps The total cost of both equals d. So we set the total cost of hots dogs plus sodas equal to d: 2hp + ps = d We want to know the cost of a soda (p). So we have a literal equation. We factor out p from the left side: p(2h + s) = d Divide each side of the equation by (2h + s) p(2h + s)/(2h + s) = d/(2h + s) Cancel the (2h + s) on the left side, we get: p = [B]d/(2h + s[/B])

Aaron bought a guitar for n dollars. The tax in his state is 6%. What is the total cost of the guita
Aaron bought a guitar for n dollars. The tax in his state is 6%. What is the total cost of the guitar including tax? Sale price is n Tax on sale is 0.06n Add them together n + 0.06n = [B]1.06n[/B]

Aaron is staying at a hotel that charges \$99.95 per night plus tax for a room. A tax of 8% is applie
Aaron is staying at a hotel that charges \$99.95 per night plus tax for a room. A tax of 8% is applied to the room rate, and an additional onetime untaxed fee of \$5.00 is charged by the hotel. Which of the following represents Aaron�s total charge, in dollars, for staying [I]x[/I] nights? [LIST] [*]The Room cost equals 99.95 times x where x is the number of rooms [*]We express an 8% tax by multiplying the room cost by 1.08 [*]Finally, we add on \$5, which is [I]untaxed[/I] [/LIST] [I][/I] Take this in pieces: Room Cost: 99.95x Tax on Room 1.08(99.95x) Add on \$5 which is untaxed: [B]1.08(99.95x) + 5[/B]

Adam took money from his savings account to use as spending money on a trip to San Antonio. On Monda
Adam took money from his savings account to use as spending money on a trip to San Antonio. On Monday, he spent half his money. On Tuesday, he sp ent half of what was left. On Wednesday, he again spent half of his remaining money. On Thursday, he work up with very little money left, but again spent half of it. If Adam started the vacation with n dollars, how much money did he have at the end of Thursday? [LIST] [*]Start with: n [*]Monday: n * 1/2 = n/2 [*]Tuesday: n/2 * 1/2 = n/4 [*]Wednesday: n/4 * 1/2 = n/8 [*]Thursday: n/8 * 1/2 = [B]n/16[/B] [/LIST]

Admir works at a coffee shop and earns \$9/hour he also works at a grocery store and earns \$15/hour.
Admir works at a coffee shop and earns \$9/hour he also works at a grocery store and earns \$15/hour. Last week he earned \$500 dollars. Write an equation that represents the situation. [LIST] [*]Let c be the hours Admir works at the coffee shop. [*]Let g be the hours Admir works at the grocery store. [/LIST] Since earnings equal hourly rate times hours, We have the following equation: [B]9c + 15g = 500[/B]

After paying 7 dollars for the pie, Keith has 64 dollars left. How much money did he have before buy
After paying 7 dollars for the pie, Keith has 64 dollars left. How much money did he have before buying the pie? we add the 7 dollars back in to find Keith's original total t: t = 64 + 7 t = [B]\$71[/B]

Alex sells cars at Keith Palmer ford. He earns 400 dollars a week plus 150 dollars per car he sells.
Alex sells cars at Keith Palmer ford. He earns 400 dollars a week plus 150 dollars per car he sells. If he earned 1450 dollars last week, how many cars did he sell? Subtract the base salary of \$400 \$1,450 - 400 =\$1,050 Divide this by 150 per car \$1,050/\$150 = [B]7 cars[/B]

Alyssa had 87 dollars to spend on 6 books. After buying them she had 15 dollars . How much did each
Alyssa had 87 dollars to spend on 6 books. After buying them she had 15 dollars . How much did each book cost ? Let b be the cost of each book. We're given: 87 - 6b = 15 [URL='https://www.mathcelebrity.com/1unk.php?num=87-6b%3D15&pl=Solve']Typing this equation into search engine[/URL], we get: [B]b = 12[/B]

Amount you spend if you buy a shirt for \$20 and jeans for j dollars
Amount you spend if you buy a shirt for \$20 and jeans for j dollars We want an algebraic expression for our total spend. We add the \$20 for a shirt plus j for the jeans: [B]20 + j[/B]

An eccentric millionaire decided to give away \$1,000,000 if Janelle took one die and rolled a "4". H
An eccentric millionaire decided to give away \$1,000,000 if Janelle took one die and rolled a "4". He wanted Janelle to have a better than 1 in 6 chance of winning, so before she rolled the die he told her that she could roll the die 3 times. If any roll was a "4", she would win the million dollars. What are Janelle's chances of winning the million dollars? Chance of winning each roll is 1/6. Which means the chances of losing each roll are 1 - 1/6 = 5/6 Calculate the probability of 3 straight losing rolls: P(Lose) = P(Loser) * P(Loser) * P(Loser) = 5/6 * 5/6 * 5/6 = 125/216 P(Win) = 1 - P(Lose) P(Win) = 1 - 125/216 P(Win) = 216/216 -125/216 P(Win) = [B]91/216[/B]

An executive in an engineering firm earns a monthly salary plus a Christmas bonus of 6400 dollars. I
An executive in an engineering firm earns a monthly salary plus a Christmas bonus of 6400 dollars. If she earns a total of 87400 dollars per year, what is her monthly salary in dollars? Calculate the annual salary without bonus: Annual Salary = Total Pay - Christmas Bonus Annual Salary = 87400 - 6400 Annual Salary = 81000 Now calculate the monthly salary. [I]Note: there are 12 months in a year[/I]: Monthly Salary = Annual Salary / 12 Monthly Salary = 81000/12 [URL='https://www.mathcelebrity.com/fraction.php?frac1=81000%2F12&frac2=3%2F8&pl=Simplify']Monthly Salary[/URL] = [B]6750[/B]

Antonio has a change jar that contains \$3.65 in half dollars and nickels. He has 7 more nickels than
Antonio has a change jar that contains \$3.65 in half dollars and nickels. He has 7 more nickels than half dollars. How many of each type of coin does he have? Let h be half dollars Let n be nickels We're given two equations: [LIST=1] [*]n = h + 7 [*]0.5h + 0.05n = 3.65 [/LIST] Substitute equation (1) into equation (2) for n: 0.5h + 0.05(h + 7) = 3.65 To solve this equation for h, we[URL='https://www.mathcelebrity.com/1unk.php?num=0.5h%2B0.05%28h%2B7%29%3D3.65&pl=Solve'] type it in our search engine[/URL] and we get: h = [B]6 [/B] To get n, we substitute h = 6 into equation (1) above: n = 6 + 7 n = [B]13[/B]

At Smith's Bike Rentals, it costs \$40 to rent a bike for 9 hours. How many hours of bike use does a
At Smith's Bike Rentals, it costs \$40 to rent a bike for 9 hours. How many hours of bike use does a customer get per dollar? Hours / Dollar = 9/40 [URL='https://www.mathcelebrity.com/search.php?q=9%2F40&x=0&y=0']Hours/Dollar[/URL] = [B]22.5 cents or 23 cents[/B]

At the movie theater, Celeste bought 2 large drinks and 2 large popcorns for \$8.50. She paid with a
At the movie theater, Celeste bought 2 large drinks and 2 large popcorns for \$8.50. She paid with a twenty-dollar bill. What is the fewest number of bills and coins that she could have received as change?r of bills and coins that she could have received as change? Calculate change: Change = Amount Paid - Bill Change = \$20.00 - \$8.50 Change = \$11.50 Largest bill we can start with is a 10 dollar bill: \$11.50 - 10 = \$1.50 Next largest bill is a \$1 bill \$1.50 - \$1 = 0.50 Now we're down to coins. Largest coin(s) we can use are quarters (assuming no half-dollars) 2 quarters equals 0.50 0.50 - 0.50 = 0 [U]Therefore, our answer is:[/U] [B]Ten dollar Bill, 1 dollar bill, and 2 quarters[/B]

Bashir finds some nickels and pennies under the couch cushions. How much money ( in dollars ) does h
Bashir finds some nickels and pennies under the couch cushions. How much money ( in dollars ) does he have if he has x nickels and y pennies Amount = Cost * Quantity, so we have: [B]0.01y + 0.05x[/B]

Benny bought a soft drink for 2 dollars and 7 candy bars. He spent a total of 27 dollars. How much d
Benny bought a soft drink for 2 dollars and 7 candy bars. He spent a total of 27 dollars. How much did each candy bar cost? [U]Calculate the candy bar spend:[/U] Candy Bar Spend = Total Spend - Soft Drink Candy Bar Spend = 27 - 2 Candy Bar Spend = 25 [U]Calculate the cost of each candy bar:[/U] Cost of each candy bar = Candy Bar Spend / Total Candy Bars Cost of each candy bar = 25 / 7 Cost of each candy bar = [B]3.57[/B]

Benny had 119 dollars to spend on 9 books. After buying them he had 11 dollars. How much did each bo
Benny had 119 dollars to spend on 9 books. After buying them he had 11 dollars. How much did each book cost ? Let each book cost "b". We have: 9b + 11 = 119 Using our [URL='http://www.mathcelebrity.com/1unk.php?num=9b%2B11%3D119&pl=Solve']equation calculator[/URL], we get [B]b = 12[/B].

Benny had 90 dollars to spend on 7 books. After buying them he had 13 dollars. How much did each boo
Benny had 90 dollars to spend on 7 books. After buying them he had 13 dollars. How much did each book cost? Let each book cost be b. We have: 7b + 13 = 90 [URL='https://www.mathcelebrity.com/1unk.php?num=7b%2B13%3D90&pl=Solve']Typing this equation into the search engine[/URL], and you get: [B]b = 11[/B]

Bill and nine of his friends each have a lot of money in the bank. Bill has 10^10 dollars in his acc
Bill and nine of his friends each have a lot of money in the bank. Bill has 10^10 dollars in his acc All nine of Bill's friends pooled together is: 9 * 10^9 Bill's 10^10 can be written as 10 * 10^9 So [B]Bill's is greater[/B]

Caleb earns points on his credit card that he can use towards future purchases.
Caleb earns points on his credit card that he can use towards future purchases. He earns four points per dollar spent on flights, two points per dollar spent on hotels, and one point per dollar spent on all other purchases. Last year, he charged a total of \$9,480 and earned 14,660 points. The amount of money spent on flights was \$140 money than twice the amount of money spent on hotels. Find the amount of money spent on each type of purchase.

Caleb earns points on his credit card that he can use towards future purchases.
Let f = dollars spent on flights, h dollars spent on hotels, and p dollars spent on all other purchases. [U]Set up our equations:[/U] (1) 4f + 2h + p = 14660 (2) f + h + p = 9480 (3) f = 2h + 140 [U]First, substitute (3) into (2)[/U] (2h + 140) + h + p = 9480 3h + p + 140 = 9480 3h + p = 9340 [U]Subtract 3h to isolate p to form equation (4)[/U] (4) p = 9340 - 3h [U]Take (3) and (4), and substitute into (1)[/U] 4(2h + 140) + 2h + (9340 - h) = 14660 [U]Multiply through[/U] 8h + 560 + 2h + 9340 - 3h = 14660 [U]Combine h terms and constants[/U] (8 + 2 - 3)h + (560 + 9340) = 14660 7h + 9900 = 14660 [U]Subtract 9900 from both sides:[/U] 7h = 4760 [U]Divide each side by 7[/U] [B]h = 680[/B] [U]Substitute h = 680 into equation (3)[/U] f = 2(680) + 140 f = 1360 + 140 [B]f = 1,500[/B] [U] Substitute h = 680 and f = 1500 into equation (2)[/U] 1500 + 680 + p = 9480 p + 2180 = 9480 [U]Subtract 2180 from each side:[/U] [B]p = 7,300[/B]

Carmen has \$30 in store bucks and a 25% discount coupon for a local department store. What maximum d
Carmen has \$30 in store bucks and a 25% discount coupon for a local department store. What maximum dollar amount can Carmen purchase so that after her store bucks and discount are applied, her total is no more than \$60 before sales tax Let the original price be p. p Apply 25% discount first, which is the same as subtracting 0.25: p(1 - 0.25) Subtract 30 for in store buck p(1 - 0.25) - 30 The phrase [I]no more than[/I] means an inequality using less than or equal to: p(1 - 0.25) - 30 <= 60 To solve this inequality for p, we [URL='https://www.mathcelebrity.com/1unk.php?num=p%281-0.25%29-30%3C%3D60&pl=Solve']type it in our math engine[/URL] and we get: [B]p <= 120[/B]

Coin Denomination Conversions
Free Coin Denomination Conversions Calculator - This caculator converts between the following coin denominations:
* Penny
* Nickel
* Dime
* Quarter
* Half-Dollar
* Dollar

Coin Values
Free Coin Values Calculator - This calculates the total value of a given amount of:
* Pennies
* Nickels
* Dimes
* Quarters
* Half-Dollars
* Dollars

Coupon Comparison
Free Coupon Comparison Calculator - Given a cost of goods, a dollar off coupon, and a percentage off coupon, this calculator will compare the two deals and determine which one is of more value. If the dollar coupon wins, the calculator will project the break even price where the dollar coupon would surpass the percentage coupon

Dan makes 9 dollars for each hour of work. Write an equation to represent his total pay p after work
Dan makes 9 dollars for each hour of work. Write an equation to represent his total pay p after working h hours. We know that pay (p) on an hourly basis (h) equals: p = Hourly Rate * h We're given an hourly rate of 9, so we have: p = [B]9h[/B]

Danny buys 5 books at \$34 each and pays for them with 10-dollar bills. How many \$10 bills did it tak
Danny buys 5 books at \$34 each and pays for them with 10-dollar bills. How many \$10 bills did it take? Calculate his total bill: Total bill = Number of books * cost per book Total bill = 5 * 34 Total bill = 170 Now calculate the number of 10-dollar bills he used: 10-dollar bills used = Total bill / 10 10-dollar bills used = 170/10 10-dollar bills used = [B]17[/B]

David has b dollars in his bank account; Claire has three times as much money as David. The sum of t
David has b dollars in his bank account; Claire has three times as much money as David. The sum of their money is \$240. How much money does Claire have? David has b Claire has 3b since three times as much means we multiply b by 3 The sum of their money is found by adding David's bank balance to Claire's bank balance to get the equation: 3b + b = 240 To solve for b, [URL='https://www.mathcelebrity.com/1unk.php?num=3b%2Bb%3D240&pl=Solve']we type this equation into our search engine[/URL] and we get: b = 60 So David has 60 dollars in his bank account. Therefore, Claire has: 3(60) = [B]180[/B]

Dollar Weighted Interest Method
Free Dollar Weighted Interest Method Calculator - Solves for Interest Rate, Starting Asset Value, Ending Asset Value, and Expenses using the Dollar Weighted Method.

Donna buys a bag of 11 oranges for 2.86. Find the unit price in dollars per orange.
Set up a proportion in dollars to oranges 2.86/11 oranges = x/1 [URL='http://www.mathcelebrity.com/unit-cost-calculator.php?num=11poundbagfor2.86&pl=Calculate+Unit+Cost']Using our unit cost calculator[/URL] [B]0.26 per orange[/B]

Ed invests \$5,500 into the stock market which earns 2% per year. In 20 years, how much will Ed's inv
Ed invests \$5,500 into the stock market which earns 2% per year. In 20 years, how much will Ed's investment be worth if interest is compounded monthly? Round to the nearest dollar. 20 years * 12 months per year = 240 months Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=5550&nval=240&int=2&pl=Monthly']compound interest calculator[/URL], we get: [B]8,276.87[/B]

Find Necessary Sample Size
The monthly earnings of a group of business students are are normally distributed with a standard deviation of 545 dollars. A researcher wants to estimate the mean monthly earnings of all business students. Find the sample size needed to have a confidence level of 95% and a margin of error of 128 dollars.

four quarters are worth \$1.00. A roll of quarters is worth \$10. How many quarters are in a roll.
four quarters are worth \$1.00. A roll of quarters is worth \$10. How many quarters are in a roll. A roll of quarters has \$10. Each dollar has 4 quarters So a roll has 10 * 4 = [B]40 quarters[/B]

Fred had 156 dollars to spend on 9 books. After buying them he had 12 dollars. How much did each boo
Fred had 156 dollars to spend on 9 books. After buying them he had 12 dollars. How much did each book cost? Subtract the 12 dollars left over from the \$156 starting amount: \$156 - \$12 = \$144 Now divide \$144 / 9 books to get the cost per book: \$144/9 = [B]\$16 per book[/B]

Hailey worked 32 hours at 8 dollars a hour .Taxes were 1% .How much money was left?
Hailey worked 32 hours at 8 dollars a hour .Taxes were 1% .How much money was left? Calculate earnings: Earnings = Hourly rate * hours worked Earnings = 32 * 8 Earnings = 256 If taxes are 1%, then Hailey ends up with 100% - 1% = 99% Leftover = 256 * 99% Leftover = [B]\$253.44[/B]

Hannah invested \$540 in an account paying an interest rate of 4.7% compounded continuously. Assuming
Hannah invested \$540 in an account paying an interest rate of 4.7% compounded continuously. Assuming no deposits or withdrawals are made, how much money, to the nearest hundred dollars, would be in the account after 18 years? [URL='https://www.mathcelebrity.com/simpint.php?av=&p=540&int=4.7&t=18&pl=Continuous+Interest']Using our compound interest balance calculator[/URL], we get: [B]\$1,258.37[/B]

Hope it's okay to ask this here?
A candy vendor analyzes his sales records and ?nds that if he sells x candy bars in one day, his pro?t(in dollars) is given byP(x) = ? 0.001x2 + 3x ? 1800 (a.) Explain the signi?cance of the number 1800 to the vendor. (b.) What is the maximum pro?t he can make in one day, and how many candy bars must he sell to achieve it? I got 1800 as the amount he starts with, and can't go over. maximum pro?t as 4950 and if I got that right I am getting stuck on how to find how many candy bars. Thanks

How many packs of dvd can you buy with 121 dollars if one pack cost 11 dollars
How many packs of dvd can you buy with 121 dollars if one pack cost 11 dollars 121 dollars / 11 dollars per pack = [B]11 packs of DVDs[/B]

I have \$36 dollars and it goes up by 3 every day how much money would I have after 500 days
I have \$36 dollars and it goes up by 3 every day how much money would I have after 500 days We have a balance function B(d) where d is the number of days passed since we first had \$36: B(d) = 3d + 36 The problem asks for B(500): B(500) = 3(500) + 36 B(500) = 1500 + 36 B(500) = [B]1536[/B]

If 5000 dollars is invested in a bank account at an interest rate of 10 per cent per year, find the
If 5000 dollars is invested in a bank account at an interest rate of 10 per cent per year, find the amount in the bank after 9 years if interest is compounded annually. We assume the interest is compounded at the end of the year. Use the [URL='http://www.mathcelebrity.com/annimmpv.php?pv=&av=&pmt=5000&n=9&i=10&check1=1&pl=Calculate']annuity immediate formula[/URL]: [B]67,897.39[/B]

If a Canadian dollar is worth \$.82 in American money, how much is an American dollar worth in Canadi
If a Canadian dollar is worth \$.82 in American money, how much is an American dollar worth in Canadian money? 1/0.82 = [B]1.22[/B]

If a jar of coins contains 50 half-dollars and 120 quarters, what is the monetary value of the coins
If a jar of coins contains 50 half-dollars and 120 quarters, what is the monetary value of the coins? We use our [URL='https://www.mathcelebrity.com/coinvalue.php?p=+&n=+&d=+&q=120&h=+50&dol=+&pl=Calculate+Coin+Value']coin values calculator[/URL], and we get: [B]\$55.00[/B]

If a tutor charges \$35 an hour and works for 286 minutes, what is the dollar amount she is owed?
If a tutor charges \$35 an hour and works for 286 minutes, what is the dollar amount she is owed? Dollar Amount Owed = Hourly Rate * Number of Hours Worked Convert Minutes worked to hours worked Hours worked = Minutes Worked / 60 Hours worked = 286 minutes / 60 minutes per hour Hours worked = 4.77 So now back to our main formula... Dollar Amount Owed = Hourly Rate * Number of Hours Worked Dollar Amount Owed = \$35 * 4.77 Dollar Amount Owed = [B]\$166.95[/B]

if ballons are on sale at 15 for\$3, whats the cost for a ballon? a)50cents b)25cost c)20cents d)20 d
if ballons are on sale at 15 for\$3, whats the cost for a ballon? a)50cents b)25cost c)20cents d)20 dollars Let c be the cost of 1 balloon. We set up a proportion of balloons to cost: 15/3 = 1/c To solve this proportion for c, we [URL='https://www.mathcelebrity.com/prop.php?num1=15&num2=1&den1=3&den2=c&propsign=%3D&pl=Calculate+missing+proportion+value']type it in our search engine[/URL] and we get: c = [B]0.2 or 20 cents[/B]

If I earn 533 dollars a minute, How many do I earn in a hour?
If I earn 533 dollars a minute, How many do I earn in a hour? 1 hour = 60 minutes 533/minute * 60 minutes / hour = [B]31,980 per hour[/B]

If I make 40,000 dollars every 15 minutes then how long will it take me to make a million
If I make 40,000 dollars every 15 minutes then how long will it take me to make a million Let f be the number of fifteen minute blocks. We're given: 40000f = 1000000 To solve for f, we [URL='https://www.mathcelebrity.com/1unk.php?num=40000f%3D1000000&pl=Solve']type this equation into our search engine[/URL] and we get: f = 25 Total minutes = Fifteen minute blocks (f) * 15 minutes Total minutes = 25 * 15 Total minutes = [B]375 minutes or 6 hours and 15 minutes[/B]

If one calculator costs d dollars, what is the cost, in dollars, of 13 calculators?
If one calculator costs d dollars, what is the cost, in dollars, of 13 calculators? Set up cost function C(n), where n is the number of calculators: C(n) = dn C(13) = [B]13d[/B]

If sales tax is currently 8.2%, write an algebraic expression representing the amount of sales tax y
If sales tax is currently 8.2%, write an algebraic expression representing the amount of sales tax you would have to pay for an item that costs D dollars. 8.2% is 0.082 as a decimal. So we have: Sales Tax Paid = [B]0.082D[/B]

If the cost of each hat is x dollars, what is the cost of y hats?
If the cost of each hat is [I]x[/I] dollars, what is the cost of [I]y[/I] hats? Cost = Price per unit * Quantity Cost = [B]xy dollars [/B]or [B]\$xy[/B]

If the original price of an item was \$30.00 and Joan only paid \$24.00 for it, what percentage discou
If the original price of an item was \$30.00 and Joan only paid \$24.00 for it, what percentage discount did Joan receive on her purchase? She received 6 dollars off of a 30 dollar purchase, so we have 6/30 = 1/5 = 0.2 = [B]20%[/B]

If Tom makes 2.9 million dollars a day how much would he make in a decade
If Tom makes 2.9 million dollars a day how much would he make in a decade 2.9 million dollars per day * 365 days per year * 10 years in a decade = [B]10,585,000,000[/B]

If you buy 4000 pencils for 80 dollars how much does each pencil cost?
If you buy 4000 pencils for 80 dollars how much does each pencil cost? 4000 pencils / 80 dollars = 1/50 = [B]0.02 cents per pencil[/B]

If you can buy 1?3 of a box of chocolates for 6 dollars, how much can you purchase for 4 dollars? Wr
If you can buy 1?3 of a box of chocolates for 6 dollars, how much can you purchase for 4 dollars? Write your answer as a fraction of a box. Set up a proportion of dollars to boxes where b is the number of boxes for \$4: 6/1/3 = 4/b Cross multiply: 6b = 4/3 Multiply each side by 1/6 to isolate b: b = 4/18 [URL='https://www.mathcelebrity.com/gcflcm.php?num1=4&num2=18&num3=&pl=GCF+and+LCM']Type in GCF(4,18) into the search engine[/URL]. We get a greatest common factor of 2. Divide 4 and 18 in the fraction by 2. We get the reduced fraction of: [B]b = 2/9[/B]

If you can buy one of pineapple chunks for \$2 then how many can you buy with \$10
Set up a proportion of pineapple chunks to dollars: 1/2 = x/10 Use our [URL='http://www.mathcelebrity.com/prop.php?num1=1&num2=x&den1=2&den2=10&propsign=%3D&pl=Calculate+missing+proportion+value']proportion calculator[/URL]: [B]x = 5[/B]

If you pay 9.70 dollars for 2.5 pounds of cheese, how much is it per pound?
This is a unit cost problem. Use our [URL='http://www.mathcelebrity.com/unit-cost-calculator.php?num=2.5poundbagfor9.70&pl=Calculate+Unit+Cost']unit cost calculator[/URL] to find dollars per pound [B]\$2.88 / pound of cheese[/B]

If you put \$1 a day away and every day you add a dollar to the previous days amount, how much would
If you put \$1 a day away and every day you add a dollar to the previous days amount, how much would you have after 100 days Day 1, you have 1 Day 2, you have 1 + 1 = 2 Day 3, you have 1 + 2 = 3 So our formula for day n is: D(n) = n D(100) = [B]100[/B]

It costs a \$20 flat fee to rent a lawn mower, plus \$5 a day starting with the first day. Let x repre
It costs a \$20 flat fee to rent a lawn mower, plus \$5 a day starting with the first day. Let x represent the number of days rented, so y represents the charge to the user (in dollars) Set up our function: [B]y = 20 + 5x[/B]

Jack has 34 bills and coins in 5�s and 2�s. The total value is \$116. How many 5 dollar bills does he
Jack has 34 bills and coins in 5�s and 2�s. The total value is \$116. How many 5 dollar bills does he have? Let the number of 5 dollar bills be f. Let the number of 2 dollar bills be t. We're given two equations: [LIST=1] [*]f + t = 34 [*]5f + 2t = 116 [/LIST] We have a system of equations, which we can solve 3 ways: [LIST=1] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Substitution']Substitution Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Elimination']Elimination Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=f+%2B+t+%3D+34&term2=5f+%2B+2t+%3D+116&pl=Cramers+Method']Cramer's Rule[/URL] [/LIST] No matter which method we choose, we get the same answers: [LIST] [*][B]f = 16[/B] [*][B]t = 18[/B] [/LIST]

Jacob bought a car that loses 10% of its value each year. If the original cost of the car is n dolla
Jacob bought a car that loses 10% of its value each year. If the original cost of the car is n dollars, what is its value after 3 years? [LIST] [*]Year 1: 0.9*n = 0.9n [*]Year 2: 0.9 * 0.9n = 0.81n [*]Year 3: 0.9 * 0.81n = [B]0.729n[/B] [/LIST]

Jay purchased tickets for a concert. To place the order, a handling charge of \$7 per ticket was cha
Jay purchased tickets for a concert. To place the order, a handling charge of \$7 per ticket was charged. A sales tax of 4% was also charged on the ticket price and the handling charges. If the total charge for four tickets was \$407.68, what was the ticket price? Round to the nearest dollar. with a ticket price of t, we have the total cost written as: 1.04 * (7*4 + 4t)= 407.68 Divide each side by 1.04 1.04 * (7*4 + 4t)/1.04= 407.68/1.04 Cancel the 1.04 on the left side and we get: 7*4 + 4t = 392 28 + 4t = 392 To solve this equation for t, we [URL='https://www.mathcelebrity.com/1unk.php?num=28%2B4t%3D392&pl=Solve']type it in our math engine[/URL] and we get: t = [B]91[/B]

Jenny makes 9 dollars for each hour of work. Write an equation to represent her total pay p after wo
Jenny makes 9 dollars for each hour of work. Write an equation to represent her total pay p after working h hours. Since Jenny makes 9 dollars for each hour of work, then her total pay (p) is her hourly rate times the number of hours worked: [B]p = 9h[/B]

Jessica tutors chemistry. For each hour that she tutors, she earns 30 dollars. Let E be her earnings
Jessica tutors chemistry. For each hour that she tutors, she earns 30 dollars. Let E be her earnings (in dollars) after tutoring for H hours. Write an equation relating E to H . Then use this equation to find Jessicas earnings after tutoring for 19 hours. Set up a function of h hours for tutoring: [B]E(h) = 30h[/B] We need to find E(19) E(19) = 30(19) E(19) = [B]570[/B]

Kaitlin is a software saleswoman. Let y represent her total pay (in dollars). Let x represent the nu
Kaitlin is a software saleswoman. Let y represent her total pay (in dollars). Let x represent the number of copies of Math is Fun she sells. Suppose that x and y are related by the equation 2500+110x=y. What is Kaitlin totalm pay if she doesnt sell any copies of Math is Fun? We want the value of y when x = 0. y = 2500 + 110(o) y = 2500 + 0 [B]y = 2500[/B]

kim wants to buy candy for 4 dollars a pound. if she wants to spend less than 20 dollars, how many b
kim wants to buy candy for 4 dollars a pound. if she wants to spend less than 20 dollars, how many bags can she buy Since cost = price * quantity, we have the following inequality with b as the number of bags: 4b < 20 To solve this inequality for b, we [URL='https://www.mathcelebrity.com/interval-notation-calculator.php?num=4b%3C20&pl=Show+Interval+Notation']type it in our search engine[/URL] and we get: [B]b < 5[/B]

Last month, my saving account was balance was \$1,000. since then, i spent x dollars from my saving
Last month, my saving account was balance was \$1,000. since then, i spent x dollars from my saving Spending means reducing our balance, so we have a new balance of: [B]1000 - x[/B]

Leifs rich uncle decided to give him \$1.00 the first day of Christmas and to double the amount each
Leifs rich uncle decided to give him \$1.00 the first day of Christmas and to double the amount each subsequent day. How much money (in dollars) does he recieve after all 12 days of Christmas? Let's look at each day: [LIST=1] [*]1 [*]2 [*]4 [*]8 [*]16 [*]32 [*]64 [*]128 [*]256 [*]512 [*]1024 [*]2048 [/LIST] Total received: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = [B]4,095[/B]

Linda estimates that her business is growing at a rate of 6% per year. Her profits is 2002 were \$30,
Linda estimates that her business is growing at a rate of 6% per year. Her profits is 2002 were \$30,000. To the nearest hundred dollars, estimate her profits for 2011. Calculate the number of years of appreciation: Appreciation years = 2011 - 2002 Appreciation years = 9 So we want 30000 to grow for 9 years at 6%. We [URL='https://www.mathcelebrity.com/apprec-percent.php?num=30000togrowfor9yearsat6%.whatisthevalue&pl=Calculate']type this into our search engine[/URL] and we get: [B]\$50,684.37[/B]

Linda takes classes at both Westside Community College and Pinewood Community College. At Westside,
Linda takes classes at both Westside Community College and Pinewood Community College. At Westside, class fees are \$98 per credit hour, and at Pinewood, class fees are \$115 per credit hour. Linda is taking a combined total of 18 credit hours at the two schools. Suppose that she is taking w credit hours at Westside. Write an expression for the combined total dollar amount she paid for her class fees. Let p be the number of credit hours at Pinewood. We have two equations: [LIST] [*]98w for Westside [*]115p at Pinewood [*]w + p = 18 [*]Total fees: [B]98w + 115p[/B] [/LIST]

Marina bought 4 notebooks, which cost b dollars each and 3 pens, which cost c dollars each. How much
Marina bought 4 notebooks, which cost b dollars each and 3 pens, which cost c dollars each. How much money did Marina spend? Cost = Quantity * Price, so we have total spend S of: S = [B]4b + 3c[/B]

Mary owns a store that sells computers. Her profit in dollars is represented by the function P(x) =
Mary owns a store that sells computers. Her profit in dollars is represented by the function P(x) = x^3 - 22x^2 - 240x, where x is the number of computers sold. Mary hopes to make a profit of at least \$10,000 by the time she sells 36 computers. Explain whether Mary will meet her goal. Justify your reasoning. Calculate P(10): P(10) = 10^3 - 22(10)^2 - 240(10) P(10) = 1000 - 2200 - 2400 P(10) = -3600 Mary will [B]not[/B] meet her goal of making a profit of at least \$10,000 when she sells 36 computers because her profit is in the negative.

Matt has \$100 dollars in a checking account and deposits \$20 per month. Ben has \$80 in a checking ac
Matt has \$100 dollars in a checking account and deposits \$20 per month. Ben has \$80 in a checking account and deposits \$30 per month. Will the accounts ever be the same balance? explain Set up the Balance account B(m), where m is the number of months since the deposit. Matt: B(m) = 20m + 100 Ben: B(m) = 80 + 30m Set both balance equations equal to each other to see if they ever have the same balance: 20m + 100 = 80 + 30m To solve for m, [URL='https://www.mathcelebrity.com/1unk.php?num=20m%2B100%3D80%2B30m&pl=Solve']we type this equation into our search engine[/URL] and we get: m = [B]2 So yes, they will have the same balance at m = 2[/B]

Mike writes a book and gets 15% royalty of total sales. He sells 50,000 books at a cost of \$35 per b
Mike writes a book and gets 15% royalty of total sales. He sells 50,000 books at a cost of \$35 per book. What is the royalty he receives? Remember to put the \$ symbol in your answer. For example, if your answer is 10 dollars, write \$10 in the answer box. [U]Calculate total sales:[/U] Total Sales = Number of Books * Price per book Total Sales = 50,000 * \$35 Total Sales = \$1,750,000 [U]Now calculate Mike's royalties:[/U] Royalties = Total Sales * Royalty Percent Royalties = \$1,750,000 * 15% [URL='https://www.mathcelebrity.com/perc.php?num=+5&den=+8&num1=+16&pct1=+80&pct2=15&den1=1750000&pcheck=3&pct=+82&decimal=+65.236&astart=+12&aend=+20&wp1=20&wp2=30&pl=Calculate']Royalties[/URL] = [B]\$262,500[/B]

Mr. Crews goes to Publix and spends \$81.25 on groceries. He pays the cashier with a hundred dollar b
Mr. Crews goes to Publix and spends \$81.25 on groceries. He pays the cashier with a hundred dollar bill. How much change will Mr. Crews get back from the cashier? Using our [URL='https://www.mathcelebrity.com/changecounter.php?cash=100&bill=81.25&pl=Calculate+Change+Amount']change calculator[/URL], we get: [B]\$18.75[/B]

nandita earned \$224 last month. she earned \$28 by selling cards at a craft fair and the rest of the
nandita earned \$224 last month. she earned \$28 by selling cards at a craft fair and the rest of the money by babysitting. Complete an equation that models the situation and can be used to determine x, the number of dollars nandita earned last month by babysitting. We know that: Babysitting + Card Sales = Total earnings Set up the equation where x is the dollars earned from babysitting: [B]x + 28 = 224[/B] To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=x%2B28%3D224&pl=Solve']type it in our math engine[/URL] and we get: x = [B]196[/B]

Oceanside Bike Rental Shop charges 16 dollars plus 6 dollars an hour for renting a bike. Mary paid 5
Oceanside Bike Rental Shop charges 16 dollars plus 6 dollars an hour for renting a bike. Mary paid 58 dollars to rent a bike. How many hours did she pay to have the bike checked out ? Set up the cost function C(h) where h is the number of hours you rent the bike: C(h) = Hourly rental cost * h + initial rental charge C(h) = 6h + 16 Now the problem asks for h when C(h) = 58, so we set C(h) = 58: 6h + 16 = 58 To solve this equation for h, we [URL='https://www.mathcelebrity.com/1unk.php?num=6h%2B16%3D58&pl=Solve']type it in our math engine[/URL] and we get: h = [B]7 hours[/B]

Penelope and Owen work at a furniture store. Penelope is paid \$215 per week plus 3.5% of her total s
Penelope and Owen work at a furniture store. Penelope is paid \$215 per week plus 3.5% of her total sales in dollars, xx, which can be represented by g(x)=215+0.035x. Owen is paid \$242 per week plus 2.5% of his total sales in dollars, xx, which can be represented by f(x)=242+0.025x. Determine the value of xx, in dollars, that will make their weekly pay the same. Set the pay functions of Owen and Penelope equal to each other: 215+0.035x = 242+0.025x Using our [URL='http://www.mathcelebrity.com/1unk.php?num=215%2B0.035x%3D242%2B0.025x&pl=Solve']equation calculator[/URL], we get: [B]x = 2700[/B]

Pound of strawberries for \$4.00. What is the price, in dollars, per ounce of strawberries?
Pound of strawberries for \$4.00. What is the price, in dollars, per ounce of strawberries? 1 pound equals 16 ounces. So the pounds per ounce equals: \$4.00/16 ounces Divide top and bottom by 16, we get: [B]\$0.25 per ounce[/B]

PRIVATE SAT TUTORING - LIVE FACE-TO-FACE SKYPE TUTORING
PRIVATE SAT TUTORING - LIVE FACE-TO-FACE SKYPE TUTORING Schedule a free consultation: [URL]https://calendly.com/soflo-sat/celeb[/URL] Expert SAT & ACT Tutoring with a live person. SoFlo SAT Tutoring offers face to face test prep through Skype. We provide all curriculum and create a custom plan tailored to our student�s strengths and weaknesses. Our founder Adam Shlomi had an 800 in Reading and 770 in Math on the SAT � good for the 99th percentile on both sections, went to Georgetown University, and has been tutoring for five years. Every SAT expert scored at least a 1500/1600 on the SAT and comes from the country�s top schools like Princeton, Johns Hopkins, and Georgetown. After only 10 sessions our average student improves 120 points. Our success comes from the individual attention we give our students. Our strategies give them confidence to succeed, plus we coach them through the SAT by creating a structured study plan. Working with our expert tutors, our students achieve amazing SAT success. [QUOTE]Adam is the best tutor I've ever had! He really knew the material and took his time explaining concepts to me. He's also fun to sit down and study with, which is super important for me. I couldn't be happier with SoFlo SAT. -- Charlotte Forman, Bard College[/QUOTE] [QUOTE]Because of SoFlo SAT my score increased 8 points on the ACT. He pushed me and helped me reach my goals. That 8 point boost helped me earn thousands of dollars on scholarships! SoFlo has the best SAT Tutor in South Florida. -- Jake Samuels, University of Florida[/QUOTE] Schedule a free call today with Adam to set up SAT prep! [URL]https://calendly.com/soflo-sat/celeb[/URL]

Rafael is a software salesman. His base salary is \$1900 , and he makes an additional \$40 for every c
Rafael is a software salesman. His base salary is \$1900 , and he makes an additional \$40 for every copy of Math is Fun he sells. Let p represent his total pay (in dollars), and let c represent the number of copies of Math is Fun he sells. Write an equation relating to . Then use this equation to find his total pay if he sells 22 copies of Math is Fun. We want a sales function p where c is the number of copies of Math is Fun p = Price per sale * c + Base Salary [B]p = 40c + 1900 [/B] Now, we want to know Total pay if c = 22 p = 40(22) + 1900 p = 880 + 1900 p = [B]2780[/B]

Reece made a deposite into an account that earns 8% simple interest. After 8 years reece has earned
Reece made a deposite into an account that earns 8% simple interest. After 8 years Reece has earned 400 dollars. How much was Reece's initial deposit? Simple interest formula: A = P(1 + it) where P is the amount of principal to be invested, i is the interest rate, t is the time, and A is the amount accumulated with interest. Plugging in our numbers, we get: 400 = P(1 + 0.08(8)) 400 = P(1 + 0.64) 400 = 1.64P 1.64P = 400 [URL='https://www.mathcelebrity.com/1unk.php?num=1.64p%3D400&pl=Solve']Typing this problem into our search engine[/URL], we get: P = [B]\$243.90[/B]

Rhonda raised \$245 for her softball team's fundraiser.She wants to raise no less than \$455.Write and
Rhonda raised \$245 for her softball team's fundraiser.She wants to raise no less than \$455.Write and solve an inequality to determine how much more money Rhonda must raise to reach her goal. Let d represent the amount of money in dollars Rhonda must raise to reach her goal. The phrase [I]no less than[/I] is an inequality using the greater than or equal sign: d >= 455 - 245 d >= [B]210[/B]

Robert buys 3 pounds of bananas at \$0.50 per pound and 3 pounds of apples at \$1.00 per pound. Which
Robert buys 3 pounds of bananas at \$0.50 per pound and 3 pounds of apples at \$1.00 per pound. Which of the following expressions represents the total cost of the fruit he bought (in dollars)? Total Cost of Fruit = Bananas in pounds * cost per banana pound + Apples in pounds * cost per apple pound Total Cost of Fruit = 3(\$0.50) + 3(\$1.00) Total Cost of Fruit = \$1.50 + \$3.00 Total Cost of Fruit = [B]\$4.00[/B]

Robert has 45 dollars. He buys 6 tshirts and has 7 dollars left over. How much did each tshirt cost?
Let x be the price of one t-shirt. Set up an equation: 6 times the number of t-shirts plus 7 dollars left over get him to a total of 45 6x = 45 - 7 6x = 38 Divide each side by 6 [B]x = 6.33[/B]

Rochelle deposits \$4,000 in an IRA. What will be the value (in dollars) of her investment in 25 year
Rochelle deposits \$4,000 in an IRA. What will be the value (in dollars) of her investment in 25 years if the investment is earning 8% per year and is compounded continuously? Using our [URL='https://www.mathcelebrity.com/simpint.php?av=&p=4000&int=8&t=25&pl=Continuous+Interest']continuous interest calculator[/URL], we get: [B]29,556.22[/B]

s dollars saved and she adds d dollars per week for the next twelve weeks
s dollars saved and she adds d dollars per week for the next twelve weeks Total savings come from adding current savings plus weekly savings: [B]s + 12d[/B]

Sales tax is currently 9.1%. Write an algebraic expression to represent the total amount paid for an
Sales tax is currently 9.1%. Write an algebraic expression to represent the total amount paid for an item that costs d dollars after tax is added to the purchase. We need to increase the price by 9.1%. Our expression is: [B]1.091d[/B]

Sally worked for 35 hours and was paid 8 dollars per hour how much money did she earn
Sally worked for 35 hours and was paid 8 dollars per hour how much money did she earn? Total Wages = Number of Hours Worked * Hourly Rate Total Wages = 35 * 8 Total Wages = [B]280[/B]

Sam purchased n notebooks. They were 4 dollars each. Write an equation to represent the total cost c
Sam purchased n notebooks. They were 4 dollars each. Write an equation to represent the total cost c that Sam paid. Cost Function is: [B]c = 4n[/B] Or, using n as a function variable, we write: c(n) = 4n

Sarah has 85 dollars. She wants to get books. Each book costs 6 dollars. How much books will she be
Sarah has 85 dollars. She wants to get books. Each book costs 6 dollars. How much books will she be able to get? 85 dollars / 6 dollars per book = 14.17 We can't get partial books, so we round down to [B]14 books[/B]

Shen buys a pack of 9 towels for \$24.30. Find the unit price in dollars per towel.
Shen buys a pack of 9 towels for \$24.30. Find the unit price in dollars per towel. Unit Price = Total Price/Units Unit Price = 24.30/9 Unit Price = [B]2.7[/B]

standard deviation of 545 dollars. Find the sample size needed to have a confidence level of 95% and
standard deviation of 545 dollars. Find the sample size needed to have a confidence level of 95% and margin of error 128

Susan works as a tutor for \$14 an hour and as a waitress for \$13 an hour. This month, she worked a c
Susan works as a tutor for \$14 an hour and as a waitress for \$13 an hour. This month, she worked a combined total of 104 hours at her two jobs. Let t be the number of hours Susan worked as a tutor this month. Write an expression for the combined total dollar amount she earned this month. Let t be the number of hours for math tutoring and w be the number of hours for waitressing. We're given: [LIST=1] [*]t + w = 104 [*]14t + 13w = D <-- Combined total dollar amount [/LIST]

The admission fee at an amusement park is \$1.50 for children and \$4 for adults. On a certain day, 32
The admission fee at an amusement park is \$1.50 for children and \$4 for adults. On a certain day, 327 people entered the park , and the admission fee collected totaled 978.00 dollars . How many children and how many adults were admitted? Let the number of children's tickets be c. Let the number of adult tickets be a. We're given two equations: [LIST=1] [*]a + c = 327 [*]4a + 1.50c = 978 [/LIST] We can solve this system of equation 3 ways: [LIST] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Substitution']Substitution Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Elimination']Elimination Method[/URL] [*][URL='https://www.mathcelebrity.com/simultaneous-equations.php?term1=a+%2B+c+%3D+327&term2=4a+%2B+1.50c+%3D+978&pl=Cramers+Method']Cramer's Rule[/URL] [/LIST] No matter which method we choose, we get the same answers: [LIST] [*][B]a = 195[/B] [*][B]c = 132[/B] [/LIST]

the cost of 3 notebooks at m dollars each
the cost of 3 notebooks at m dollars each Cost = Quantity x Price Cost = [B]3m[/B]

the cost of b books at p dollars each
the cost of b books at p dollars each Cost = Price * Quantity, so we have: Cost = [B]pb[/B]

The function P(x) = -30x^2 + 360x + 785 models the profit, P(x), earned by a theatre owner on the ba
The function P(x) = -30x^2 + 360x + 785 models the profit, P(x), earned by a theatre owner on the basis of a ticket price, x. Both the profit and the ticket price are in dollars. What is the maximum profit, and how much should the tickets cost? Take the [URL='http://www.mathcelebrity.com/dfii.php?term1=-30x%5E2+%2B+360x+%2B+785&fpt=0&ptarget1=0&ptarget2=0&itarget=0%2C1&starget=0%2C1&nsimp=8&pl=1st+Derivative']derivative of the profit function[/URL]: P'(x) = -60x + 360 We find the maximum when we set the profit derivative equal to 0 -60x + 360 = 0 Subtract 360 from both sides: -60x = -360 Divide each side by -60 [B]x = 6 <-- This is the ticket price to maximize profit[/B] Substitute x = 6 into the profit equation: P(6) = -30(6)^2 + 360(6) + 785 P(6) = -1080 + 2160 + 785 [B]P(6) = 1865[/B]

The monthly earnings of a group of business students are are normally distributed with a standard de
The monthly earnings of a group of business students are are normally distributed with a standard deviation of 545 dollars. A researcher wants to estimate the mean monthly earnings of all business students. Find the sample size needed to have a confidence level of 95% and a margin of error of 128 dollars.

The monthly earnings of a group of business students are are normally distributed with a standard de
The monthly earnings of a group of business students are are normally distributed with a standard deviation of 545 dollars. A researcher wants to estimate the mean monthly earnings of all business students. Find the sample size needed to have a confidence level of 95% and a margin of error of 128 dollars.

The monthly earnings of a group of business students are are normally distributed with a standard de

The parent company contributed \$5 million for the 50 million votes cast. What did they pay each vote
We want to see votes per dollar. So we divide 50 million votes by \$5 million dollars. 50,000,0000 ------------ 5,000,000 We have 10 votes for every dollar spent. Or, ten cents per vote.

The regular price for a television is Q dollars. Each Saturday televisions are 20% off (The discount
The regular price for a television is Q dollars. Each Saturday televisions are 20% off (The discount is .2Q). What is the price of a television on Saturday in terms of Q? Q = Regular Price .2Q = Discount Discounted Price = Q - .2Q = [B]0.8Q[/B]

The tax on 1 dollar is 7 cents. What is the tax on 5 dollars?
The tax on 1 dollar is 7 cents. What is the tax on 5 dollars? Two ways you can do this: [LIST=1] [*]Every 1 dollar has 7 cents, so every 5 dollars has (1 * 5) = (7 * 5) = [B]35 cents[/B] [*]7 cents is 7% of 1 dollar. So 7% of 5 dollars is [B]35 cents[/B] [/LIST]

The total cost to fix your bike is \$45 the parts cost \$10 and the labor cost seven dollars per hour
The total cost to fix your bike is \$45 the parts cost \$10 and the labor cost seven dollars per hour how many hours were there: Set up a cost function where h is the number of hours: 7h + 10 = 45 To solve for h, we t[URL='https://www.mathcelebrity.com/1unk.php?num=7h%2B10%3D45&pl=Solve']ype this equation into our search engine[/URL] and we get: h = [B]5[/B]

There is a sales tax of \$15 on an item that costs \$153 before tax. A second item costs \$81.60 before
There is a sales tax of \$15 on an item that costs \$153 before tax. A second item costs \$81.60 before tax. What is the sales tax on the second item? We assume the goods are bought in the same store, so tax rates are the same: Tax Rate = Tax Amount / Cost before tax Tax Rate = 15/153 Tax Rate = 0.098 or 9.8% Calculate sales tax on the second item Sales Tax = Cost before Tax * Tax Rate Sales Tax = 81.60 * 0.098 Sales Tax = 7.9968 We round to 2 decimals for dollars and cents and we get: Sales Tax = [B]\$8.00[/B]

Three people went to lunch and bought a large meal which they all split. The total cost, including t
Three people went to lunch and bought a large meal which they all split. The total cost, including tip, was \$30. Each person paid \$10 to the waitress and started to leave the restaurant. As they left, the waitress came running up to them with five dollars saying that she made a mistake and that the meal and tip should have cost only \$25. The waitress then gave each person one dollar, but didn't know how to split the remaining two dollars. They told her to keep the extra two dollars as an additional tip. When the people started talking about what had just happened, they started getting confused. They had each paid \$10 for the meal and received one dollar back, so they each really paid \$9 for the meal for a total of \$27. Add the two dollars of extra tip and the total is \$29. Where did the extra one dollar go? [B]The missing dollar is not really missing. The cost of the meal is really \$27. The \$25 plus the extra two dollar tip was given to the waitress -- \$27 What we have is the cost (\$27) plus the refund (\$3) = \$30. The \$30 that was originally paid is accounted for as follows: Restaurant + regular waitress tip: \$25 Three people: \$3 (refund) Waitress: \$2 (extra tip) \$25 + \$3 + \$2 = \$30[/B]

Tom has t dollars. He buys 5 packets of gum worth d dollars each. How much money does he have left
Tom has t dollars. He buys 5 packets of gum worth d dollars each. How much money does he have left Since cost = Price * Quantity, and a purchase reduces Tom's money, we have: [B]t - 5d[/B]

What is the value of n quarters expressed as dollars?
What is the value of n quarters expressed as dollars? dollars = quarters/4 [B]n/4 or 0.25n[/B]

Which is a better buy 42 bows for \$7.14 or 120 bows for \$25.20
Let's compare in terms of what 1 dollar gets you: Use our [URL='http://www.mathcelebrity.com/betterbuy.php?p1=42&p2=120&q1=7.14&q2=25.20&pl=Better+Buy']better buy calculator[/URL] to show 120 bows for \$25.20 is a better buy.

Write an expression for the amount of money in p pennies plus 7 dollars.
Write an expression for the amount of money in p pennies plus 7 dollars. Each penny is worth 0.01, so we have: [B]0.01p + 7d[/B]

You are buying boxes of cookies at a bakery. Each box of cookies costs \$4. In the equation below, c
You are buying boxes of cookies at a bakery. Each box of cookies costs \$4. In the equation below, c represents the number of boxes of cookies you buy, and d represents the amount the cookies will cost you (in dollars). The relationship between these two variables can be expressed by the following equation: d=4c. Identify the dependent and independent variables. [B]The variable d is dependent, and c is independent since the value of d is determined by c.[/B]

You are parking your car in a garage. The first hour is free but every additional hour is 2 dollars.
You are parking your car in a garage. The first hour is free but every additional hour is 2 dollars. You parked for 3.25 hours. What is the cost? [U]Calculate the number of paid hours:[/U] Paid Hours = Total Hours - 1 (since first hour is free) Paid Hours = 3.25 - 1 Paid Hours = 2.25 [U]Calculate the total cost:[/U] Total Cost = Hourly Rate * Paid Hours Total Cost = 2 * 2.25 Paid Hours = [B]\$4.50[/B]

You buy a container of cat litter for \$12.25 and a bag of cat food for x dollars. The total purchase
You buy a container of cat litter for \$12.25 and a bag of cat food for x dollars. The total purchase is \$19.08, which includes 6% sales tax. Write and solve an equation to find the cost of the cat food. Our purchase includes at cat litter and cat food. Adding those together, we're given: 12.25 + x = 19.08 To solve for x, [URL='https://www.mathcelebrity.com/1unk.php?num=12.25%2Bx%3D19.08&pl=Solve']we type this equation into our search engine[/URL], and we get: x = 6.83 Since the cat food includes sales tax, we need to remove the sales tax of 6% to get the original purchase price. Original purchase price = After tax price / (1 + tax rate) Original purchase price = 6.83/1.06 Original purchase price = [B]\$6.44[/B]

You like to shovel snow in winter. You made them pay 7 dollars for every driveway you shoveled and e
You like to shovel snow in winter. You made them pay 7 dollars for every driveway you shoveled and earned 42 dollars. How many driveways did you shovel? Driveways shoveled = Total Money / Dollars per Driveway Driveways shoveled = 42/7 [URL='https://www.mathcelebrity.com/fraction.php?frac1=42%2F7&frac2=3%2F8&pl=Simplify']Driveways shoveled[/URL] = [B]6[/B]

You pay 510.00 to rent a storage unit for 3 months the total cost includes an initial deposit plus a
You pay 510.00 to rent a storage unit for 3 months the total cost includes an initial deposit plus a monthly fee of 160.00. Write and equation that represents your total cost Y in dollars after X months. Set up the cost function Y where x is the number of months you rent [B]Y = 160x + 510[/B]

You spend \$91 shopping for new clothes. You spend \$24 for a pair of jeans and 35\$ for a pair of shoe
You spend \$91 shopping for new clothes. You spend \$24 for a pair of jeans and 35\$ for a pair of shoes. You also buy 4 shirts that cost d dollars. How much is each shirt? Subtract the cost of the jeans and shoes to get the cost of the shirts: Cost of shirts = Shopping Spend - Cost of Jeans - Cost of Shoes Cost of shirts = \$91 - \$24 - \$35 Cost of shirts = \$32 We're given the cost of each shirt is s, and we bought 4 shirts. Therefore, we have: 4s = 32 [URL='https://www.mathcelebrity.com/1unk.php?num=4s%3D32&pl=Solve']Type this equation into the search engine[/URL], and we get the cost of each shirt s = [B]\$8[/B]

Your bill for dinner, including a 7.25% sales tax, was \$49.95. You want to leave a 15% tip on the co
Your bill for dinner, including a 7.25% sales tax, was \$49.95. You want to leave a 15% tip on the cost of the dinner before the sales tax. Find the amount of the tip to the nearest dollar. Find the pretax cost: 49.95/1.0725 = 46.57 Now, add 15% tip to the pretax bill: 46.57(1.15) = [B]\$53.56[/B]

Zoey invested \$230 in an account paying an interest rate of 6.3% compounded daily. Assuming no depos
Zoey invested \$230 in an account paying an interest rate of 6.3% compounded daily. Assuming no deposits or withdrawals are made, how much money, to the nearest hundred dollars, would be in the account after 12 years? Using our [URL='https://www.mathcelebrity.com/compoundint.php?bal=230&nval=4380&int=6.3&pl=Daily']compound interest calculator with 12*365 = 4380 for days,[/URL] we have a balance of: [B]\$489.81[/B]